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Abstract: Unsupervised deep learning using autoencoders has shown excellent results in image analysis and computer
vision. However, only few studies have been presented in the field of digital pathology, where proper labelling
of the objects of interest is a particularly costly and difficult task. Thus, having a first fully unsupervised
segmentation could greatly help in the analysis process of such images. In this paper, many architectures of
convolutional autoencoders have been compared to study the influence of three main hyperparameters:
(1) number of convolutional layers, (2) number of convolutions in each layer and (3) size of the latent space.
Different clustering algorithms are also compared and we propose a new way to obtain more precise results
by applying ensemble clustering techniques which consists in combining multiple clustering results.

This is the author’s version of an article published in International Conference on Computer Vision Theory and Applications,
VISAPP, 2022.

1 INTRODUCTION

Pathology is essential for the diagnosis evaluation
and understanding of many underlying biological and
physiological mechanisms. It is usually a visual eval-
uation by pathologists of a tissue sample using a mi-
croscope to identify its structural properties. Cur-
rently, the visual evaluation of microscopic specimens
is largely an unassisted process, and the pathologist’s
accuracy is established through extensive training,
comparative analysis, peer quality control and per-
sonal experience. However, this field has undergone
several technological revolutions in recent years with
the advent of virtual microscopy (conversion of glass
slides into high-resolution images called Whole Slide
Images - WSI), often referred to as ”digital pathol-
ogy”. Thus, major efforts have been made to design
image analysis tools, for example to identify basic
biological structures (stroma, immune cells, tumour,
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etc.), in order to make it easier for doctors to (semi-
)automate the interpretation of slides. Meanwhile, au-
tomatic image analysis algorithms have recently made
extraordinary progress, particularly with the advent of
the deep learning methods introduced by Lecun et al.
(?). Indeed, the performances of these methods have
exploded in recent years, allowing the detection, clas-
sification and segmentation of objects of interest in
images and particularly in medical images with high
precision (?; ?). But most of these approaches op-
erate in supervised mode, i.e. they require many ex-
amples in order to provide an effective model. How-
ever, obtaining quality annotations on histopatholog-
ical images remains very costly. For example, in the
field of colorectal cancer WSI segmentation, Qaiser
et al. proposed a method based on persistent homol-
ogy to classify tumour and non-tumour patches from
Hematoxylin & Eosin stained histology images (?).
To train their system, more than 18,000 annotated
patches were needed. At the same time, unsuper-
vised approaches have shown their interest in many
applications for image analysis, such as remote sens-
ing (?; ?). Recently, they have also been applied to
histopathological WSI analysis for cells segmentation
(?) or regions of interest classification (?). In particu-
lar for cancer, the authors in (?) describe an unsuper-
vised approach for extracting interesting information
from WSI that obtains better accuracy than human for



prognostic prediction of prostate cancer recurrence.
In this paper, we are interested in automatic seg-

mentation in order to quickly extract regions of in-
terest (tumours for example) to make a more precise
analysis of these areas only. However, only few ap-
proaches on fully unsupervised segmentation of WSI
have been proposed. The first attempt to segment
regions of interest from WSI without any prior in-
formation or examples has been performed in (?).
The authors highlight tissue morphology in breast
cancer histology images by calculating a set of Ga-
bor filters to discriminate different regions. In (?),
the authors use mathematical morphology to extract
‘virtual-cells’ (e.g. superpixels), for which morpho-
logical and colour features are calculated to then ap-
ply a consensus clustering algorithm to identify the
different tissues in the image. More recently, a simi-
lar approach has been presented in (?), adding a semi-
supervised self-training classifier to the previous tech-
niques that enhances the results at the cost of partial
supervision. All these approaches propose to clus-
ter the image based on predefined features. However,
deep learning approaches, particularly via autoencod-
ing architectures, make it possible to avoid manual
definition of features by calculating a condensed rep-
resentation of the image in a latent space by applying
convolutional filters. Unfortunately, as stated in (?),
most applications of autoencoders in digital pathol-
ogy were developed to perform cell segmentation or
nuclei detection (?; ?), or stain normalisation (?).
Therefore, we propose here to study the potential of
these approaches for WSI tissue segmentation. The
aim is to try to automatically identify clusters corre-
sponding to each type of tissue in the WSI that could
then be labelled by pathologists.

In this paper, we present a study on how convolu-
tional autoencoders perform on WSI segmentation by
comparing different approaches. First, different au-
toencoders architectures are compared to quantify the
importance of hyperparameters of interest (number of
convolutional layers, number of convolutions by layer
and size of the latent space). Then, a multi-resolution
approach using an ensemble clustering framework is
evaluated, to see if such ensemble techniques could
provide more accurate results.

2 METHODS

2.1 Convolutional autoencoders

In this section, we explore of the use of convolu-
tional autoencoders to cluster WSI histopathological
images. For this, we present several experiments to

evaluate the importance of each hyperparameter.
As shown in Figure 1, a Convolutional AutoEn-

coder (CAE) is a deep convolutional neural network
composed of two parts: an encoder and a decoder.
The main purpose of the CAE is to minimise a loss
function L, evaluating the difference between the in-
put and the output of the CAE (usually Mean Squared
Error). Once this function is minimised, we can as-
sume that the encoder part builds up a suitable sum-
mary of the input data, in the latent space, as the de-
coder part is capable of reconstructing an accurate
copy of it from this encoded representation.

The encoder is first constituted of the input layer
(having the size of the input image) which is con-
nected to N convolutional layers of diminishing size,
up to an information bottleneck of size Z, called the
latent space. The bottleneck is connected to a se-
ries of N convolutional layers of increasing size, un-
til reaching the size of the input. This second part
is called the decoder. Each convolution layer is com-
posed of C convolutions and is followed by three other
layers: a batch normalisation, an activation function
(ReLU) and a max pooling of size (2,2).

To perform the clustering, a trained CAE is used to
encode each patch of the whole image. Then, this en-
coded representation of the patch (in the latent space)
is given as the input of a clustering algorithm and a
cluster is assigned to the patch.

We decided to evaluate the influence of the three
hyperparameters N, Z and C. For each one, different
values were tested while fixing the two others (N =
2, Z = 250, C = 10). To evaluate the quality of the
results, the Adjusted Rand Index (ARI) is calculated
to compare the obtained clustering to the annotations
of the expert. The Rand Index computes a similarity
measure between two clusterings by considering all
pairs of samples and counting pairs that are assigned
in the same or different clusters in the predicted and
true clusterings. The score is then normalised into the
ARI score by:

ARI =
(RI −Expected RI)

(max(RI)−Expected RI)
(1)

Values of the ARI are close to 0 for random la-
belling independently of the number of clusters and
samples, and exactly 1 when the clusterings are iden-
tical (up to a permutation).

Each CAE was trained over a set of 10,000 differ-
ent patches randomly selected. As the result of both
the clustering and the training of the CAE are non-
deterministic, due to a high sensitivity to the initial
conditions, 10 autoencoders were trained and the re-
sults averaged for each hyperparameter value.

We also investigated the performance of several
clustering algorithms, i.e Kmeans, Agglomerative



Figure 1: Architecture of a CAE with N = 2, C = 10 and Z = 50

clustering (AggCl), Gaussian mixture (GM) and also
the not too deep clustering method (N2D) exposed in
(?). A clustering performed directly with the Kmeans
algorithm on the raw data (without any data reduction
by the CAE) has been calculated as a baseline to eval-
uate the benefit of encoding the data with the CAE.

2.2 Ensemble clustering

As exposed in (?), both micro-structures and macro-
structures give different information. Pathologists
also agree that identifying a single cell is way more
difficult without its surrounding context and they al-
ways look at the WSI at lower magnification (to better
capture the context) before zooming in at high mag-
nification. Furthermore, in (?) an example of multi-
resolution lung cancer adenocarcinoma classification
using deep learning shows improvements in the over-
all accuracy.

Thus, we explored a way to improve the results by
using an ensemble of clustering methods, each focus-
ing on a different resolution. The objective is to merge
low level information (context) with high level infor-
mation (shape of the cells, etc.). For this, the consen-
sus method proposed in (?) was used. This method
is based on a the evaluation of the similarity between
different clusterings and the definition of correspond-
ing clusters. Then, a multi-view voting approach is
computed to produce a single result representing all
clusterings. An example of the architecture of the ap-
proach is depicted in Figure 2.

We explored different configurations, but we only
present the two most representative which highlight
how the quality of the results can be improved by
using ensemble clustering. The first configuration,
Emultires is composed of three clustering algorithms
(Kmeans) working on the latent space representation
of the image obtained by different CAE trained at dif-

ferent resolutions: 10× with 8 clusters, 5× with 6
clusters and 5× with 8 clusters. As the reconstructed
image from the autoencoder seems to focus more on
colour intensity than real structures, a second ensem-
ble configuration has been tested. To add diversity
and to force the final result to focus its attention more
on the structure of the objects, a clustering working on
a binary image (by thresholding the intensity of the
initial image) has been computed. Thus, the second
configuration (Estruct) is composed of three clustering
algorithms (Kmeans) with the following parameters:
5× on the binary image with 6 clusters, 5× on the
binary image with 8 clusters and 10× on the initial
RGB image with 6 clusters.

3 EXPERIMENTS AND RESULTS

Our study was performed on 8 WSI of Haematoxylin
Eosin Saffron (HES) stained tissue extracted from
a cohort of patients built within the scope of the
AiCOLO project (INSERM/Plan Cancer) studying
colon cancer. The images have been provided by
Georges François Leclerc Centre (Dijon, France) and
acquired from two different centres. An example is
given in Figure 3a. HES stain distinguishes cell nuclei
in purple, from extracellular matrix and cytoplasm in
pink.

All images have been acquired at 20× magni-
fication (corresponding to 0.5 µm/pixel) but stored
at several resolutions in a pyramidal format. The
size of each image is around 90,000 × 50,000 pix-
els. To train autoencoders, 10,000 patches of size
128×128 pixels were randomly extracted at 10× res-
olution from all images (and 5× for the ensemble
approach), as this seems to be the minimal amount
of information required by human expert to classify



Figure 2: Architecture of the first ensemble configuration Emultires: two CAE trained at different resolutions (10× and 5×)
produce different latent representations that are clustered. The three resulting clusterings are then merged through the multi-
view voting algorithm proposed in (?).

the tissue. Meanwhile, sparse manual annotations
of the five classes of tissue, tumour, stroma, outer
layer mucosa (crypts of Lieberkuhn and connective
tissue), immune cells, and necrosis, and two classes
for background and artefacts (ink marks, etc.) have
been performed by pathologists on the images (using
Cytomine(?)), to be able to evaluate the relevance of
the clustering.

3.1 Evaluation of all hyperparameters
of the CAE

First, results obtained without using the latent space
representation (see Table 1) are worse than all those
obtained when clustering the encoded data. This con-
firms the interest of using a CAE for WSI clustering.
As shown in Figure 4a, it appears that the number of
convolutions in each layer of convolutions (hyperpa-
rameter C) does not greatly affects the quality of the
autoencoder as only a apart from a slight narrowing of
the variability of the results. It’s quite easy to figure
out why: passed a certain number, additional convo-
lution brings to few complementary information. Fig-
ure 4b shows the evaluation of the ARI with different
number of convolution layers in the architecture. We
can notice an increase of the quality index up to 4 lay-
ers and then a brutal drop at 5. This indicates clearly
that too many convolutions (and poolings that down-
sample the information) reduce the information that

can further not be properly processed.
Nonetheless, as seen in Figure 5, the latent space

size Z, seems to greatly influence the pertinence of the
CAE. Indeed, the ARI clearly grows as there is more
space to encode the latent representation, as a more
precise information can be stored. Also, the more in-
formation is present in the latent representation, the
more classes can easily be differentiated. However,
it is also clear that a too large latent space will not
be able to summarise efficiently the information, and
thus, will not help the clustering algorithm to discrim-
inate the different tissues. Moreover, the larger the la-
tent space, the more memory and time are needed to
train the network.

3.2 Comparison of the CAE with the
ensemble approach

As seen in the previous experiment, the ARI tends to
give low scores because we only have very few an-
notations on each class of interest. So we decided to
compute a second evaluation criterion based on the
ability of the clustering to detect tumours areas in the
image, as it is the main class of interest in our project.
To associate the tumour class to a cluster, we calcu-
lated its tumour density (number of labelled tumour
pixels / number of total labelled pixels in the cluster).
All clusters having a density over 50% are kept as ’tu-
mour’, the others are labelled as ’not tumour’. Thus,



(a) Example of a WSI of colon tissue stained with HES
(magnification: ×20, size: 97,920× 55,040 pixels)

(b) Example of clustering with 8 clusters (orange, red and
blue clusters corresponding to tumour)

Figure 3: Example of (a) a raw WSI and (b) a clustering result of this image.

Raw data Encoded data

Kmeans Kmeans AggCl GM N2D Emultires Estruct

Image 1 0.39 0.89 0.48 0.96 0.38 0.94 0.27 0.73 0.43 0.97 0.47 0.96 0.42 0.88
Image 2 0.27 0.68 0.33 0.63 0.29 0.62 0.19 0.43 0.29 0.68 0.31 0.66 0.46 0.62
Image 3 0.25 0.76 0.39 0.87 0.35 0.85 0.22 0.76 0.31 0.88 0.37 0.87 0.45 0.91
Image 4 0.08 0.48 0.08 0.50 0.13 0.61 0.05 0.51 0.12 0.55 0.08 0.54 0.08 0.75
Image 5 0.11 0.65 0.11 0.64 0.10 0.60 0.10 0.62 0.11 0.65 0.12 0.65 0.17 0.72
Image 6 0.37 0.68 0.52 0.75 0.51 0.72 0.49 0.67 0.43 0.76 0.51 0.77 0.57 0.75
Image 7 0.28 0.68 0.35 0.73 0.33 0.75 0.14 0.61 0.37 0.74 0.41 0.76 0.36 0.84
Image 8 0.33 0.63 0.44 0.71 0.42 0.70 0.07 0.44 0.37 0.69 0.44 0.75 0.45 0.75

Mean 0.26 0.68 0.34 0.72 0.31 0.72 0.19 0.60 0.30 0.74 0.34 0.75 0.37 0.78
Stdv 0.11 0.12 0.16 0.14 0.14 0.12 0.14 0.13 0.13 0.13 0.16 0.13 0.16 0.09

Table 1: Evaluation of the ARI and FScore of all clustering results obtained with the different methods.

two evaluation criteria have been calculated on the re-
sults and are presented in Table 1: the ARI as in the
previous experiment (see Eq.1) and the FScore on the
two-classes problem (tumour vs. not tumour) (?).

3.3 Discussion

Classical methods applied on the latent space rep-
resentation of the CAE tend to show acceptable re-
sults. However, both ensemble clustering configura-
tions seem to be more efficient in finding coherent
clusters corresponding to the classes of interest de-
fined by the pathologists.

Among all the exposed methods, Estruct seems to
give the best results. It tends to confirm the impor-
tance of the shape of the objects on histopathological
images. Furthermore, it shows that even if convolu-
tional autoencoders aim at automatically finding the

best features to encode images, they can also take ad-
vantage of pre-computed features for some specific
tasks.

4 CONCLUSION

In this paper, we compared different configurations
of convolutional autoencoders in the field of unsuper-
vised learning for WSI histopathological image seg-
mentation. For this, different CAE architectures have
been compared to try to find the best configuration
and to study the influence of each hyperparameter.
Then, we proposed a new approach that uses ensem-
ble clustering technique to take advantage of multires-
olution information and structural features in the im-
age. This confirms the importance of having diversity
in an ensemble learning framework and that working



at different resolutions at the same time can really im-
prove the quality of the results.
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(a) Number of convolutions C in each layer of convolutions (N = 2, Z = 250)
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(b) Number of layers of convolutions N (Z = 250, C = 10)
Figure 4: Evaluation of the ARI for the two main hyperparameters of the convolutions of the CAE comparing Kmeans
clustering on 7, 8, 9 and 10 clusters.
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Figure 5: Evaluation of the ARI with different latent space sizes, comparing Kmeans clustering on 7, 8, 9 and 10 clusters.


