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Abstract

Virtual stain transfer is a promising area of research in Computational Pathology,

which has a great potential to alleviate important limitations when applying deep-

learning-based solutions such as lack of annotations and sensitivity to a domain shift.

However, in the literature, the majority of virtual staining approaches are trained for a

specific staining or stain combination, and their extension to unseen stainings requires

the acquisition of additional data and training. In this paper, we propose HistoStar-

GAN, a unified framework that performs stain transfer between multiple stainings,

stain normalisation and stain invariant segmentation, all in one inference of the model.

We demonstrate the generalisation abilities of the proposed solution to perform di-

verse stain transfer and accurate stain invariant segmentation over numerous unseen

stainings, which is the first such demonstration in the field. Moreover, the pre-trained

HistoStarGAN model can serve as a synthetic data generator, which paves the way

for the use of fully annotated synthetic image data to improve the training of deep

learning-based algorithms. To illustrate the capabilities of our approach, as well as the

potential risks in the microscopy domain, inspired by applications in natural images,

we generated KidneyArtPathology, a fully annotated artificial image dataset for renal

pathology.
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1. Introduction

The deep learning revolution (Sejnowski, 2018) opens the door for remarkable ap-

plications in the medical domain. Plenty of routine clinical tasks have great potential

to be fully automatised, which triggered a staggering amount of research (Piccialli

et al., 2021; Varoquaux and Cheplygina, 2022; Liu et al., 2019). In such an environ-

ment, Computational Pathology is not an exception (Van der Laak et al., 2021; Srinidhi

et al., 2021). However, currently many state-of-the-art deep learning methods are data-

hungry approaches that require huge collections of annotated data to be trained. How-

ever, collecting medical data is strictly regulated, while obtaining high-quality anno-

tations can only be effectively performed by trained experts (Grote et al., 2018). All

this poses important constraints for the development of automated solutions. More-

over, existing data and annotations can only be reused with limited success, because

the staining process is prone to high variability (Bancroft and Gamble, 2008), repre-

senting a source of a domain shift that negatively affects pre-trained models (Tellez

et al., 2019; Gadermayr et al., 2018; Vasiljević et al., 2021a).

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), being able to

generate samples from complex data distributions (Karras et al., 2020b), have great po-

tential to overcome some of the limitations in applying deep learning-based solutions

in Computational Pathology. Several class of applications, such as image synthesis and

stain transfer have been identified in the literature (Tschuchnig et al., 2020). A partic-

ularly promising application area is stain transfer, which enables virtual re-staining of

a histopathological image, i.e. changing its appearance to look as though it has been

stained with another staining or staining variation. Many attempts in the field employ

image-to-image translation-based approaches for stain normalisation (Shaban et al.,

2019; Ke et al., 2021; de Bel et al., 2021), i.e. reducing the domain shift caused by

intra-stain variation, which is a variation in the appearance of the same staining (e.g.

due to different laboratories procedures). Other approaches try to reduce inter-stain

variation, which is a variation in the appearance of different stainings (Liu et al., 2021;

Gadermayr et al., 2018; Levy et al., 2020; Vasiljević et al., 2021a). Only a few attempts

try to address the generalisation problem of deep-learning-based solutions by propos-
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ing a model that is robust to intra-stain variation (Wagner et al., 2021; Xue et al., 2021;

Levine et al., 2020) or inter-stain-variation (Vasiljević et al., 2021a).

However, considering numerous factors of variations which affect the appearance

of one staining, in addition to the differences in tissue structures visible under different

stainings, the task of virtual stain transfer is naturally non-deterministic and ill-posted.

Although state-of-the-art virtual staining strategies, mainly based on GANs, result in

visually plausible translations, assessing the results’ quality is hard. Obtaining pixel-

wise annotations across different staining modalities is limited by the requirement of

either processing consecutive tissue sections separately, or re-staining identical sections

several times. The latter has the disadvantage of tissue destruction, or processing arte-

facts. Using consecutive sections that are only stained once minimises this problem,

but the sequentially produced sections are never identical, and their co-registration can

be limited by various factors (Merveille et al., 2021). Thus, a virtual staining model

resulting in multiple translations can support the digital pathology domain to overcome

the shortage of high-quality annotations and improve the training of networks. There-

fore, it would be reasonable to expect from a virtual staining model to result in diverse

translations. However, the approaches which enable such diverse translations are not

very common in the field.

In this paper, we propose HistoStarGAN, a model that can perform diverse trans-

lations for stain normalisation and stain transfer tasks, in addition to stain invariant

segmentation. The main contributions of this article are:

• HistoStarGAN, the first model able to simultaneously perform diverse stain trans-

fer, stain normalisation and stain invariant segmentation.

• The proposed model generalises stain transfer across many stainings, including

unseen stainings.

• The model learns using limited annotations from one staining and generalises to

a wide range of unseen stainings without requiring additional annotations.

• KindeyArtPathology - the first artificially created fully-annotated histological

dataset, illustrating the potential and the risks of generating synthetic training
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data targeting staining methods relevant in renal pathology.

• Pre-trained HistoStarGAN, which can be used for numerous offline applications,

e.g. augmentation of small-size private datasets.

The rest of the paper is organised as follows. The HistoStarGAN model is explained

in more detail in Section 3.1; visual and quantitative results are given in Section 4. The

HistoStarGAN architecture and training parameters are analysed in an ablation study

presented in Section 5. KindeyArtPathology dataset is explained in more detail Sec-

tion 6. The KidneyArtPathology dataset and pre-trained models can be available upon

request. Demonstrative examples are provided online1. The limitations and opportuni-

ties of the proposed solution are presented in Section 7; conclusions of the paper are

presented in Section 8.

2. Related work

Virtual staining approaches are greatly inspired by style transfer literature (Jose

et al., 2021) where GAN-based approaches achieve state-of-the-art results in many ap-

plication areas. Therefore, some authors try to bypass the physical staining process,

which introduces most of the variation (Li et al., 2020; Rana et al., 2020) while others

try to normalise slide appearance after staining (Shaban et al., 2019). Nevertheless, the

methods are usually based on image-to-image translations approaches, where one do-

main (stain) is translated to look like a reference staining. Some approaches (Salehi and

Chalechale, 2020; Cho et al., 2017; Cong et al., 2021) simulate paired datasets by dis-

carding colour information (e.g. by using a greyscale version of the image or extracting

a haematoxylin channel from the image) and learning paired image-to-image transla-

tions models, such as pix2pix (Isola et al., 2017). However, discarding the majority

of colour information can also eliminate relevant diagnostic details (Moghadam et al.,

2022; BenTaieb and Hamarneh, 2017). Thus, many approaches build upon the idea

of unpaired image-to-image translation methods, where CycleGAN-based (Zhu et al.,

2017) approaches are dominant (Shaban et al., 2019; Kang et al., 2021; Shrivastava

1https://main.d33ezaxrmu3m4a.amplifyapp.com/
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et al., 2021; de Bel et al., 2021; Lo et al., 2021; Liu et al., 2021). However, CycleGAN

reduces virtual staining to a deterministic mapping, producing a single and fixed output

for a given input. Although training repetitions of the same model, or different epochs

during training, can result in different translations (Vasiljević et al., 2022), the common

characteristic of CycleGAN-based methods is a deterministic translation, which limits

output diversity. Moreover, the method is bi-directional, meaning that its application

to more than two stainings requires multiple trainings of the model. Alternative multi-

domain approaches, such as those based on StarGAN (Choi et al., 2018) are shown to

be inferior to CycleGAN in specific applications (Vasiljević et al., 2021a). The quality

of more complex models (Lin et al., 2022) to reduce stain variation in multi-domain

translations remains to be explored. Alternative approaches try to overcome the stain

variation problem by aiming for stain invariant solutions. Existing methods mainly

exploit virtual staining to perform training time augmentation (Vasiljević et al., 2021a;

Wagner et al., 2021), or test-time augmentation (Scalbert et al., 2022). Such a solution

can greatly benefit from diverse virtual staining as a single model can perform more

extensive augmentation. The current state-of-the-art methods for diverse multi-domain

style transfer, such as StarGANv2 (Choi et al., 2020) and TUINT (Baek et al., 2021),

could be used for diverse virtual staining. However, contrary to the domain of nat-

ural images where style transfer should alter source-specific image characteristics in

the output (e.g. the size of ears when translating a cat to a dog, the amount of hair

and hairstyle in female to male transfer etc. ), in the medical domain, such extensive

alterations are not desirable as they could result in removing/inventing specific cell pop-

ulation (like cancerous) or structures, for example glomeruli in renal pathology. Thus,

the direct application of current state-of-the-art style transfer models is not straight-

forward. A recent attempt by Scalbert et al. (2022) employs StarGANv2 translations

for test-time augmentation. However, the benefits of this approach are demonstrated in

H&E staining only, and it requires annotated samples from several domains to learn the

translation. In the absence of annotated samples, the training of such models becomes

difficult, as will be demonstrated in this paper and discussed in more detail in Section

5.3. Alternatively, the application of unconditional GAN-based approaches for style

transfer such as StyleGAN (Karras et al., 2020b) or BigGAN (Brock et al., 2018), al-

5



though promising for the generation of de-novo histological images, cannot be directly

applied for the task of virtual staining.

This paper proposes an extension of the StarGANv2 model, named HistoStarGAN.

The presented approach can perform plausible and diverse virtual staining, preserving

the structure of interest during translation. Moreover, the model obtains stain invari-

ant segmentation of the selected structure. The proposed solution results in a single

model which is, for the first time, able to perform simultaneous stain normalisation,

stain transfer and stain invariant segmentation without any additional data manipula-

tion during test time. The HistoStarGAN is the new state-of-the-art method for stain

invariant segmentation, outperforming the current by a large margin. The benefits are

demonstrated in several stainings, both histochemical and immunohistochemical, for

the task of glomeruli segmentation.

3. Method

3.1. Model Description

HistoStarGAN architecture is presented in Figure 1. The model is composed of

five modules: generator (G), discriminator (D), mapping network (F), style encoder

(E) and segmentation network (S ). The models G, D, F and E are elements of Star-

GANv2’s architecture.

The mapping network F generates a stain-specific style by transforming the ran-

dom latent code z into the target stain’s style. The style is injected into the generator

G during translation, which enables diverse generations as different latent codes result

in different stain-specific styles. In order to ensure that the generator uses the injected

style information, the model is constrained with a style reconstruction loss, i.e. the style

encoder E extracts the style from the generated image, and the difference between that

style and the style provided to the generator during translation is minimised (blue ar-

rows in the Figure 1). In order to explicitly allow style diversification, the model is

trained to produce different outputs for different styles in the given target domain by

the style diversification loss (orange arrows in the Figure 1). Moreover, the model is

constrained using a cycle-consistency loss (green brackets in Figure 1), e.g. the dif-
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ference between the original and reconstructed images is minimised. Reconstruction

is performed using the same generator, but the style information is extracted by the

mapping network by taking the original image as input.

G

G

Real images

Style
reconstruction

loss

D

A
dversarial

loss

style for each stain

Style
diversification

loss

Cycle
consistency

loss

E

F

E

z

z'

Real image

Generated
image

Enc. Dec.

Seg.

Enc.Dec.

Seg.

Generated
image

Cross-entropy
loss

Cross-entropy
loss

G - generator
D - discriminator
F - mapping network
E - style encoder
Seg – segmentation network

Real image path

Fake image path

S
eg

m
en

ta
ti

on
 m

od
ul

e

Extension to StarGANv2

Figure 1: HistoStarGAN – an end-to-end trainable model for simultaneous stain transfer and stain invariant

segmentation. The red block denotes the difference compared to the StarGANv2 model (Choi et al., 2020).

The model is composed of five modules – generator (G), discriminator (D), mapping network (F), style

encoder (E) and segmentation network (S ) (the generator and style encoder are illustrated twice for clarity

of the flow of information, however, these are the same networks). The mapping network F generates a

stain-specific style by transforming the random latent code z into the target stain’s style. The style is injected

into the generator G during translation, which enables diverse generations, which is also explicitly enforced

by the style diversification loss. This is illustrated by the red and orange lines that indicate different styles

when performing stain transfer of real PAS image to the Jones H&E staining. In order to ensure that the

generator uses the injected style information, the model is constrained with a style reconstruction loss (blue

arrows). Additionally, the model is constrained by cycle-consistency loss (green brackets) which is imposed

as the difference between the real image and the translation of a fake image given the style of the real image

(violet line). Given that generator G has an encoder-decoder structure, to ensure that the features extracted

by the encoder are stain invariant, the training is constrained by a segmentation loss (red module). Finally,

the training of the model is also guided by an adversarial loss.

The generator G is an encoder-decoder network, with an instance normalisation

layer in the encoder and an adaptive instance normalisation layer in the decoder. In
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this way, the encoder removes stain-specific characteristics from the image while the

decoder injects target-stain characteristics during the generation process. Thus, the

features extracted by the generator’s encoder should be stain invariant. Under the as-

sumption that a structure of interest is visible in all stainings, i.e. the stain invariant

solution is feasible, the representation extracted in the bottleneck should be sufficient

to perform the considered object-related task. Therefore, a segmentation module is

attached to the bottleneck. Trained end-to-end with the other modules, this extension

forces the preservation of structures of interest during the translation process.

More formally, let X be the set of histopathological images, S the set of available

segmentation masks for the structure of interest, and Y the set of stainings found in

X. Given an image x ∈ X, its original staining y ∈ Y and corresponding segmentation

mask mseg, the model is trained using the following objectives.

Adversarial objective:. The latent code z ∈ Z, source domain y ∈ Y and target domain

ỹ ∈ Y are randomly sampled. The target style code s̃ = Fỹ(z) is obtained via the

mapping network. Thus the generator G, with input image x from domain y and style

s̃, generates and output image G(x, s̃). This image is evaluated by the discriminator’s

output, which corresponds to a domain ỹ, Dỹ. These are trained using the adversarial

loss (Goodfellow et al., 2014) , such that

Ladv = Ex,y[log Dy(x)] + Ex,ỹ,z[log (1 − Dỹ(G(x, s̃)))], (1)

where E denotes mathematical expectation.

Style reconstruction:. In order to ensure that generator G uses the provided style code

s̃ when producing output G(x, s̃), the mapping network E is used to extract the style

of the generated image, Eỹ(G(x, s̃)), and the following style reconstruction loss (Choi

et al., 2020) is used:

Lsty = Ex,ỹ,z[∥s̃ − Eỹ(G(x, s̃))∥1]. (2)

Style diversification:. The generator is forced to produce different outputs for different

styles produced by the mapping network F. Given different latent codes z1 and z2, the
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following diversity loss (Choi et al., 2020) is maximised:

Lds = Ex,ỹ,z1,z2 [∥G(x, s̃1) −G(x, s̃1)∥1]. (3)

Cycle-consistency:. The following cycle-consistency loss Zhu et al. (2017) forces the

generator to reconstruct the original image given the source style code ŝ = Ey(x):

Lcyc = Ex,y,ỹ,z[∥x −G(G(x, s̃), ŝ)∥1]. (4)

Segmentation objective:. The cross-entropy loss Jadon (2020) is used to train the seg-

mentation branch on both real data and their translation to a random stain, such that

Lseg = Ex,mseg [mseg log S eg(x)] + Ex,mseg,z[mseg log S eg(G(x, s̃))]. (5)

Full objective:. The importance of each of these losses is controlled by hyperparame-

ters, and are combined in the following full objective:

min
G,F,E

max
D
Ladv + λstyLsty − λdsLds + λcycLcyc + λsegLseg. (6)

3.2. Training Setup

Training the HistoStarGAN model’s segmentation branch is supervised, and re-

quires the segmentation masks for all images in the dataset. However, in Computa-

tional Pathology this assumption is unrealistic. It is more reasonable to assume that

annotations exist for limited examples, e.g. as is common in the field, only for one

staining (Gadermayr et al., 2018; Vasiljević et al., 2021a). Thus, the PAS staining is

considered to be annotated (the source stain), while the other stainings (Jones H&E,

Sirius Red, CD34, CD68) are considered to be unannotated.

To overcome the lack of annotations in target stainings, the CycleGAN’s determin-

istic nature and limited capacity to perform geometrical changes are used to artificially

generate a fully-annotated dataset. The CycleGAN model is trained in an unsupervised

manner, using randomly extracted patches from a given pair of stainings. Separate

CycleGAN models are trained for each pair of PAS-target stains. When trained, the

CycleGAN models are applied to the source (annotated) dataset in order to generate

annotated samples in the target stainings.
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3.2.1. Dataset

The dataset contains tissue samples collected from a cohort of 10 patients who un-

derwent tumour nephrectomy due to renal carcinoma. The kidney tissue was selected

as distant as possible from the tumours to display largely normal renal glomeruli; some

samples included variable degrees of pathological changes such as full or partial re-

placement of the functional tissue by fibrotic changes (“sclerosis”) reflecting normal

age-related changes or the renal consequences of general cardiovascular comorbidity

(e.g. cardiac arrhythmia, hypertension, arteriosclerosis). The paraffin-embedded sam-

ples were cut into 3µm thick sections and stained with either Jones’ H&E basement

membrane stain (Jones), PAS or Sirius Red, in addition to two immunohistochemistry

markers (CD34, CD68), using an automated staining instrument (Ventana Benchmark

Ultra). Whole slide images (WSIs) were acquired using an Aperio AT2 scanner at

40× magnification (a resolution of 0.253 µm / pixel). All the glomeruli in each WSI

were annotated and validated by pathology experts by outlining them using Cytomine

(Marée et al., 2016). The dataset was divided into 4 training, 2 validation and 4 test

patients for each staining, the number of annotated glomeruli in each staining is given

in Table 1. The sets of patches of size 512 × 512 pixels (at 40× magnification) are

extracted from each staining in the following manner:

• For CycleGAN training, 5000 random patches are extracted from training WSIs

for each staining (no supervision required for any staining).

• For HistoStarGAN training, patches are extracted from PAS staining only and

translated to all other stainings by pre-trained CycleGAN models (no supervision

in target domains). The segmentation performances of HistoStarGAN model in

Section 4 are reported based on WSIs from test patients in each staining.

• Fully supervised training of baseline segmentation networks (UNet models (Ron-

neberger et al., 2015), only used for evaluation purposes in Section 5.3) are

trained for each staining separately. All glomeruli patches and seven times more

tissue patches are extracted from each staining. The best models are determined

based on performances on the validation set (patches extracted from validation
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Staining Training Validation Test

PAS 662 588 1092

Jones H&E 621 590 1043

Sirius Red 651 576 1049

CD34 565 595 1019

CD68 526 521 1046

Table 1: The number of annotated glomeruli in each staining. Tissue patches are extracted in proportion 1 : 7

to account for to account for tissue variability. All patches are of size 512×512 pixels (at 40×magnification)

patients from each staining) and the final performances are reported on the WSIs

of the test patients.

3.2.2. Training Details

The CycleGAN models have a 9 ResNet blocks architecture, and they are trained

for 50 epochs, with patches of size 512 × 512 pixels extracted from the training pa-

tients in each staining. Upon training, a balanced dataset is formed by translating 500

glomeruli and 500 random negative patches from PAS to all target stains. When train-

ing the HistoStarGAN model, extensive data augmentation is performed, following the

conclusions by Karras et al. (2020a) that data augmentation is a crucial factor when

training GANs with limited data.

The following augmentations are applied 50% of time with an independent proba-

bility of 0.5 (batches are augmented ‘on the fly’) for each method; elastic deformation

(σ = 10); affine transformations – random rotation in the range [0◦, 180◦], random shift

sampled from [−5, 5] pixels, random magnification sampled from [0.95, 1], and hori-

zontal/vertical flip; brightness and contrast enhancements with factors sampled from

[0.0, 0.2] and [0.8, 1.2] respectfully; additive Gaussian noise with σ ∈ [0, 0.01].

The HistoStarGAN model is trained using the following loss weights: λsty = 1,

λds = 1, λcyc = 1, and λseg = 5. To stabilise the training, the weight of the style di-

versification loss, λds, is linearly decreased to zero over 100 000 iterations (Choi et al.,

2020). Also, the weight of the segmentation loss, λseg, is 0 for the first 10 000 iterations
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until the model starts to generate recognisable images from each stain. Although their

fidelity is not high enough, at this moment the segmentation model receives enough

meaningful information to start learning. HistoStarGAN is trained for 100 000 itera-

tions. The architectures for the generator, discriminator, style encoder, and mapping

network are the same as in the original StarGANv2 architecture (Choi et al., 2020)

as well as optimisers and learning rates. The segmentation branch’s architecture is

the same as the generator’s decoder, without the adaptive instance normalisation layer.

The segmentation branch is trained using the Adam optimiser with a learning rate 10−5.

As for the other networks, exponential moving averages over parameters (Karras et al.,

2018) is applied during training to obtain the final segmentation network, as experimen-

tally, it gives better results than the best model saved based on validation performance.

The HistoStarGAN model’s segmentation branch is trained using a balanced dataset,

mainly containing artificial histological images produced by both CycleGAN and His-

toStarGAN. However, tasks in Computational Pathology are usually concerned with

sparse structures, and using an imbalanced dataset to account for the tissue diversity

is beneficial for learning (Lampert et al., 2019; Vasiljević et al., 2021a). Moreover,

CycleGAN-based translations can be noisy (Vasiljević et al., 2022), which could af-

fect the stain invariant properties of the segmentation module. Thus, after training

HistoStarGAN as a whole, the segmentation module is fine-tuned for one epoch using

real unbalanced PAS-stained images while the rest of the model is fixed (the choice of

the number of fine-tuning epochs is discussed in Section 5). This dataset contains all

PAS glomeruli (662 extracted from the training patients) and seven times more nega-

tive patches (4634) to account for tissue variability. The Adam optimiser is used with

a batch size of 8 and a learning rate of 0.0001. The same augmentation as in Lampert

et al. (2019) is applied during fine-tuning.

4. Results

This section will demonstrate that HistoStarGAN results in a single model able

to perform diverse stain transfer, stain normalisation and stain invariant segmentation.

Moreover, having a stain-invariant encoder, the HistoStarGAN model can, for the first
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time, generalise stain transfer to unseen stainings.

4.1. Diverse Multi-Domain Stain Transfer

A trained model is able to perform diverse stain transfer between any pair of stain-

ings seen during training. The diverse transfer is obtained by sampling different random

codes, which are transformed by the mapping network into target-stain specific styles.

Some examples of PAS image translations, alongside corresponding segmentations, are

provided in Figure 2. The obtained translations are plausible histopathological images,

where the structures of interest, glomeruli in this case, are preserved during transla-

tion. The difference between translations are at the level of microscopic structures (e.g.

appearance of nuclei, the thickness of a membrane, etc.), see the Figure 3. Since the

HistoStarGAN is multi-domain, the same model is also able to perform translations

between other staining pairs, examples of which are provided in Figure 4.

4.2. Generalisation of stain transfer

Since HistoStarGAN is trained on a variety of stains, the generator’s encoder is

stain invariant, which for the first time enables virtual staining of unseen stains. Ex-

amples of which are presented in Figure 5, in which a new stain modality named H&E

in addition to three double-stainings CD3-CD68, CD3-CD163 and CD3-CD206 are

translated to stainings seen during training. Moreover, in Figure 6 the model is ap-

plied to the AIDPATH dataset (Bueno et al., 2020) composed of images which are

publicly available variations of the PAS stain. This demonstrates that HistoStarGAN

can generalise and obtain stain normalisation (column PAS) and stain transfer (other

columns) simultaneously, alongside stain-invariant segmentation. Videos representing

the exploration of the latent space during translation, are provided online2.

4.3. Stain invariance

A model composed of the generator’s encoder and the segmentation branch, can

perform stain-invariant segmentation of WSIs across various stainings. Table 2 presents

2https://main.d33ezaxrmu3m4a.amplifyapp.com/
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Translations

Real PAS PAS Jones H&E Sirius Red CD68 CD34

Figure 2: Diverse HistoStarGAN translations of a PAS glomeruli patch to target stains (including PAS)

with corresponding segmentations. Fake images in each row are generated using the same random vector

transformed into a stain-specific style by the Mapping network. The differences between translations are in

microscopic structures (e.g. membrane weight or nucleus appearing), which is barely visible in these figures.

Full resolution images, in which these differences are more visible, are available online.
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PAS Generated Images CD68 Generated Images

Figure 3: A closer look at the differences between translations.
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Translationss

Real PAS Jones H&E Sirius Red CD68 CD34
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Figure 4: HistoStarGAN translations between different stains with corresponding segmentation. Each trans-

lation is obtained by using different latent codes.
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Translations

Real PAS Jones H&E Sirius Red CD68 CD34
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Figure 5: HistoStarGAN – generalisation of stain transfer and segmentation to unseen stain modalities.
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Translations

Real PAS Jones H&E Sirius Red CD68 CD34
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Figure 6: HistoStarGAN applied for stain normalisation, stain transfer and glomeruli segmentation of the

publicly available AIDPATH (PAS-based) dataset.
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Model Score
Test Staining

PAS Jones

H&E

CD68 Sirius

Red

CD34 Overall

UDA-GAN

F1 0.903
(0.003)

0.849

(0.031)

0.720

(0.016)

0.875
(0.016)

0.800

(0.033)

0.829

(0.072)

Precision 0.878

(0.018)

0.787

(0.060)

0.688

(0.110)

0.835

(0.035)

0.720

(0.064)

0.782

(0.079)

Recall 0.930

(0.014)

0.923

(0.010)

0.777

(0.095)

0.921

(0.007)

0.903

(0.016)

0.891

(0.064)

HistoStar-

GAN

F1 0.871

(0.009)

0.870
(0.007)

0.755
(0.006)

0.859

(0.004)

0.840
(0.004)

0.839
(0.048)

Precision 0.845

(0.029)

0.864

(0.019)

0.845

(0.039)

0.883

(0.018)

0.839

(0.032)

0.855

(0.018)

Recall 0.899

(0.016)

0.877

(0.007)

0.684

(0.024)

0.836

(0.017)

0.842

(0.024)

0.828

(0.084)

Table 2: Quantitative results for HistoStarGAN compared to UDA-GAN. Each model is trained on annotated

PAS (source staining) and tested on different (target) stainings. Standard deviations are in parentheses, the

highest F1 scores for each staining are in bold.

the segmentation results for test WSIs from all stainings (virtually) seen during train-

ing. The model’s performance is compared to UDA-GAN, which uses the same Cycle-

GAN models for data augmentation. Since the patch size is 512 × 512, each patch is

cropped to 508×508 during UDA-GAN training. The presented results are the averages

of three independent training repetitions with corresponding standard deviations.

The HistoStarGAN can generalise across all virtually seen stainings during train-

ing, outperforming UDA-GAN trained using the same translation models. Apart from

being an end-to-end model that simultaneously performs virtual staining and segmen-

tation, HistoStarGAN also results in an increase in precision. This can be attributed to

the fact that HistoStarGAN better recognises the negative tissue (less false positives).

However, recall is lower, which indicates that more glomeruli (or parts of them) are

missed compared to UDA-GAN. This could be the consequence of predicting a seg-

mentation mask from the feature space directly, without skip-connections. However,
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Model Score

Test Staining

H&E CD3 CD3-

CD68

CD3-

CD163

CD3-

CD206

CD3-

MS4A4A

Overall

UDA-GAN

F1 0.681

(0.031)

0.648

(0.111)

0.258

(0.062

0.260

(0.050)

0.330

(0.058)

0.330

(0.071)

0.418

(0.194)

Precision 0.865

(0.079)

0.550

(0.161)

0.171

(0.047)

0.168

(0.039)

0.230

(0.054)

0.240

(0.070)

0.371

(0.281)

Recall 0.563

(0.028)

0.824

(0.032)

0.538

(0.070)

0.586

(0.039)

0.598

(0.029)

0.542

(0.029)

0.608

(0.108)

HistoStar-

GAN

F1 0.813
(0.022)

0.741
(0.009)

0.597
(0.011)

0.611
(0.015)

0.593
(0.014)

0.570
(0.012)

0.654
(0.099)

Precision 0.855

(0.018)

0.850

(0.007)

0.835

(0.022)

0.891

(0.021)

0.881

(0.026)

0.882

(0.025)

0.866

(0.022)

Recall 0.777

(0.056)

0.656

(0.011)

0.465

(0.017)

0.465

(0.021)

0.447

(0.020)

0.422

(0.016)

0.539

(0.144)

Table 3: Quantitative results for HistoStarGAN compared to UDA-GAN on unseen stains. Each model is

trained on annotated PAS (source staining). Standard deviations are in parentheses, the highest F1 scores for

each staining are in bold.

extending the HistoStarGAN model with skip-connections between the encoder and

segmentation branch, experimentally showed to negatively affect training stability.

4.3.1. Generalisation of stain invariance

To test the generalisation of HistoStarGAN, the model is applied to new stainings

not seen during training. Using the annotations of four whole-slide images from each

of the new stainings (H&E, CD3, CD3-CD68, CD3-CD163 and CD3-CD206), the av-

erages of three independent training repetitions with corresponding standard deviations

are presented in Table 3. Overall, HistoStarGAN generalises better and is more robust

compared to UDA-GAN. A potential cause of UDA-GAN failure in some stains can be

its learning process where stain invariance is forced only on the pixel level. Although

the HistoStarGAN uses the identical CyleGAN translations, the framework extracts

stain-invariant features, which are better transferred to unseen stains. Moreover, the
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segmentation branch of HistoStarGAN is trained on a dataset with more variety since

HistoStarGAN translations are also included (see Figure 1).

5. Ablation Studies

HistoStarGAN model builds upon StarGANv2 in several aspects – the first ex-

tension is attaching a segmentation module to the generator; the second is using pre-

trained CycleGANs to create the training dataset, and the third is fine-tuning the seg-

mentation module using only source data. In the following, each of these aspects will

be discussed via an ablation study, in a bottom-to-top direction as illustrated in Figure

7.

StarGANv2

Segmentation branch

Dataset characteristics

Fine-tuning

Figure 7: Illustration of the differences between the StarGANv2 and HistoStarGAN. Each of these differ-

ences is justified via an ablation study.

Model Score
Test Staining

PAS Jones

H&E

CD68 Sirius

Red

CD34 Overall

HistoStar-

GAN

F1 0.820 0.816 0.705 0.792 0.777 0.782

Precision 0.779 0.791 0.764 0.792 0.802 0.761

Recall 0.865 0.843 0.655 0.782 0.795 0.779

HistoStar-

GAN

(fine-tuned)

F1 0.876 0.875 0.762 0.855 0.842 0.842

Precision 0.851 0.871 0.861 0.886 0.842 0.862

Recall 0.902 0.879 0.683 0.825 0.843 0.826

Table 4: Fine-tuning effects on the segmentation model’s performance, in which the model is fine-tuned for

one epoch.
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5.1. Fine-Tuning

Table 4 demonstrates that fine-tuning the segmentation branch using the fixed gen-

erator’s encoder increases segmentation performance. In practice, fine-tuning for just

a single epoch on an imbalanced source dataset increases overall performance on vir-

tually seen stains (test patient WSIs) by around 6% in overall F1-score. However,

longer fine-tuning, although potentially beneficial for particular stainings, does not of-

fer any benefits. Also, the performance on the source’s validation set does not correlate

with the obtained improvements, i.e. the fine-tuned model with the lowest validation

loss does not bring the best overall results on unseen stains. Thus, fine-tuning for one

epoch is chosen.

5.2. Dataset Characteristics

A balanced and (virtually) fully annotated dataset is used to train HistoStarGAN.

A labelled dataset is required since the segmentation branch is trained in a supervised

manner, and thus alternative data sampling strategies such as random data sampling

(Gadermayr et al., 2018; Vasiljević et al., 2021a) are not suitable. However, the fully

annotated dataset does not need to be balanced. Thus, using the findings of Lampert

et al. (2019), an imbalanced source (PAS) dataset is formed where all glomeruli in the

training patient images are extracted (662) and seven times as many negative patches

(4634). This dataset is translated using CycleGAN to all target stains (CycleGAN

models are always trained in an unsupervised way, on random patches). Thus, a fully

annotated and highly imbalanced dataset is created on top of which the HistoStarGAN

model is trained.

The results obtained in this setting are presented in Figure 8, in which one glomeruli

patch from the PAS stain is translated into multiple stainings using different latent

codes. The obtained translations for one stain pair differ from each other in terms of

glomeruli texture and surrounding structures. The model is able to change the size

of glomeruli by changing the size of the Bowman’s capsule (white space), in addition

to varying the appearance of stain-specific markers (i.e. macrophages in CD68 stain).

Nevertheless, the segmentation branch successfully recognises all of glomeruli varia-

tions. Compared to training with a balanced dataset, this setting offers more translation
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variability related to the surrounding tissue and structure of the glomeruli themselves.

However, although globally these translations look realistic, the internal structure in-

side the glomeruli are not. Since in HistoStarGAN these translations must also be suc-

cessfully segmented, this leads to an increase in the false positive rate. For example, it

is evident that the produced translations often contain ‘artificial looking patterns’ such

as a tendency to group microscopic structures (e.g. nuclei) into diagonal, horizontal or

vertical stripes (in Figure 8 this is mostly visible in translations to Sirius Red and Jones

H&E). Therefore, the proposed model uses a balanced dataset since it greatly reduces

such possibilities.

5.3. Segmentation Branch

Without the segmentation branch, HistoStarGAN is reduced to StarGANv2 (see

Figure 7). Moreover, removing the segmentation module removes the requirement for

the dataset to be fully annotated. Thus, such a model can be trained using a dataset

composed of random patches (uniformly sampled in each stain), as well as created by

CycleGAN translations of the annotated stain (PAS), both balanced and imbalanced.

Each of these will be separately analysed.

CycleGAN-Generated Balanced Dataset. A StarGANv2 model trained on a balanced

dataset produced by CycleGAN translations of the annotated stain, can also result in

diverse multi-domain translations between multiple stainings, as illustrated in Figure

9. Usually, the glomeruli structures are visually preserved. However, when measuring

the quality of obtained translation using the performances of pre-trained segmentation

models for each staining (baseline models trained in a fully-supervised setting), the

conclusion can be different. Figure 10 presents a visual comparisons of HistoStarGAN

and StarGANv2, where translations obtained by StarGANv2 are segmented using pre-

trained models from each staining. Since both models can obtain diverse translations,

Figure 10 represent the average translation and average segmentation over 50 random

latent codes. It can be seen that HistoStarGAN gives a more accurate segmentations,

especially in difficult cases, e.g. sclerotic glomeruli, rows 5 and 7. Nevertheless, in

the absence of a segmentation branch, the dataset composition itself cannot be a strong
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Translations

Real PAS PAS Jones H&E Sirius Red CD68 CD34

Figure 8: HistoStarGAN translations using a model trained using a CycleGAN-generated imbalanced anno-

tated dataset. The images in each column are generated using the same latent codes.
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Translations

Real image PAS Jones H&E Sirius Red CD68 CD34
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Figure 9: StarGANv2 trained on CycleGAN-generated translations of a balanced PAS dataset to other stains.

Each image in generated using different latent code.
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Translation

Real Patch PAS Jones H&E Sirius Red CD68 CD34
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Figure 10: StarGANv2 trained on a balanced CycleGAN-generated dataset compared to HistoStarGAN. The

segmentations for StarGANv2 are obtained by stain-specific, pre-trained baseline models. Each translation

and segmentation is averaged over 50 random latent codes. N.B: HistoStarGAN yields more accurate seg-

mentations. Pre-trained models result in 324×324 pixel images which are placed in the centre of a 512×512

pixel black squares.
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guarantee that glomeruli structures will be preserved. Thus, an explicit requirement,

such as attaching the proposed segmentation branch, is beneficial to ensure the correct-

ness of the translation and robust segmentation.

Translations

Real PAS Jones H&E Sirius Red CD68 CD34
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R
ed

C
D

34

Figure 11: StarGANv2 model trained on CycleGAN-generated translations of an imbalanced PAS dataset to

other stains. Each image is generated using different latent codes.

CycleGAN-Generated Imbalanced Dataset. If the dataset used to train the StarGANv2

is imbalanced, the model can no longer preserve the structure of interest. Some exam-

ples of stain transfers obtained with this model are presented in Figure 11. Since the

HistoStarGAN model trained using the same imbalanced dataset does not have such a

problem, this demonstrates the significance of the proposed segmentation branch.
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Translations

Real PAS Jones H&E Sirius Red CD68 CD34
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Figure 12: StarGANv2 model trained on random patches extracted from all stains, applied to translated

glomeruli patches. The images in each column are generated using different latent codes.
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Random Dataset:. StarGANv2 can also be trained on a dataset composed of random

patches extracted from each stain (PAS, Jones H&E, Sirius Red, CD68 and CD34).

Thus, 5000 random patches from the training patients are extracted uniformly, and the

total dataset containing 25 000 images is used to train the StarGANv2 model. As in the

CycleGAN-generated imbalanced data setting, this model cannot preserve the structure

of interest, as demonstrated in Figure 12. Moreover, it is prone to bigger alterations of

microscopic structures, which limits the usefulness of such translations and confirms

the benefits of the proposed HistoStarGAN model.

6. KidneyArtPathology Dataset

Generated images

PAS Jones H&E Sirius Red CD68 CD34

Figure 13: The HistoStarGAN model generates plausible histopathological images from random noise.

3Image credits in order of appearance: Strasbourg Cathedral:

https://www.visitstrasbourg.fr/en/discover/must-see-attractions/the-cathedral/, Kragujevac Museum:

https://www.topworldtraveling.com/articles/travel-guides/15-best-things-to-do-in-kragujevac-serbia.html,

Dog: https://github.com/fastai/imagenette
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Translations

Image PAS Jones H&E Sirius Red CD68 CD34

Figure 14: KidneyArtPathology - histopathological image generation from natural images3.

Here we describe a new dataset released to encourage the progress of deep learning-

based solutions in the field of renal pathology. The dataset contains 5000 images

from five stainings, in a resolution of 512 × 512 pixels, fully annotated for the task

of glomeruli segmentation. To achieve this, a HistoStarGAN model is trained using

a dataset that is as representative as possible, i.e. two immunohistochemical stainings

(CD68 and CD34) in addition to three histochemical stainings (PAS, Jones H&E and

Sirius Red). Thus, the model can generate various translations in multiple stainings,

which has allowed the creation of the KidneyArtPathology dataset 4. The dataset is

composed of HistoStarGAN translations of PAS stain images (the same as those used

to generate the annotated dataset used for HistoStarGAN training) which are translated

using 10 random latent vectors into each stainings, including PAS.

Moreover, the associated pre-trained HistoStarGAN model (also publicly available)

can be further used to augment private datasets by augmenting the number of stainings

4KidneyArtPathology has been release online, https://main.d33ezaxrmu3m4a.amplifyapp.com/
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to those used during HistStarGAN’s training. There are several benefits of such a

dataset, which fall under three categories:

• Pathological – Non-invasive Pathology Training, the diverse appearance of glomeruli

can be helpful in the early stages of a pathologist’s training.

• Benchmarks – the absence of publicly available real-world datasets poses huge

challenges for rigorous comparison in the literature. Thus, such a large collection

of annotated patches can serve as a benchmark.

• Domain adaptation – The data can be used in addition to a private dataset (which

can contain limited data) to build more robust models, e.g. as an augmentation

or domain adaptation strategy.

New histopathological images: Since the style of a stain is encoded by the map-

ping network, it is possible to generate new patches in each training staining by pro-

viding a random image, rather than a source histopathological patch, to be translated to

a given stain. In addition to a fully-annotated glomeruli dataset, new histopathological

images in different stains can be generated. Some generated examples are provided

in Figure 13. Alternatively, by providing non-histopathological image, the HistoStar-

GAN is able to convert it to a histopathological image, examples of which are provided

in Figure 14 (although medical use of this is admittedly most likely limited to non-

existent, it is an interesting side property of HistoStarGAN) .

7. Limitations and Opportunities

HistoStarGAN is an end-to-end model that can segment and generate diverse plau-

sible histopathological images alongside their segmentation masks. However, for some

latent codes the model can produce specific artefacts in the translations. These are

usually well-incorporated into the overall texture of the image, which makes them not

obvious at first glance. A closer look at one such example is given in Figure 15. The

primary hypothesis is that the discriminator does not have enough capacity to spot these

artefacts, and thus a more sophisticated discriminator could be considered.
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Figure 15: HistoStarGAN - common artefacts. N.B. the artefacts are well-incorporated into the image texture

and not obviously noticeable at first glance.

Furthermore, the performance of the HistoStarGAN model can be affected by the

choice of source and target stainings and the quality of CycleGAN translations, which

remains to be explored in future work. HistoStarGAN is based on CycleGAN transla-

tions, which are proven to be noisy (Vasiljević et al., 2021b, 2022), and therefore some

of these invisible artefacts may be recreated by HistoStarGAN. Thus, it is unclear what

information from the source domain is preserved in translations and whether any of the

applied augmentations can perturb them. It is possible that incorporating additional real

examples from the target stainings can improve translation quality. Additionally, it has

been confirmed experimentally that the choice of loss functions used for the diversity

loss can significantly affect the HistoStarGAN translations. For example, the model

will be forced to perform structural changes if diversity loss is set to maximise the

structural similarity between images (this is illustrated on the project’s website linked

to above). Although from a style-transfer perspective, such a solution is interesting,

changing internal structures in this way is not biologically justifiable. However, ac-

cording to a recent study (Yamashita et al., 2021), medically-irrelevant augmentation
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can increase model robustness; thus, this represents another exciting direction for the

work ahead.

Nevertheless, the model has great potential to be used for tackling the lack of an-

notations in histopathological datasets. Depending on the availability of labels in a

given target domain, diverse HistoStarGAN translations with corresponding segmenta-

tion masks can help training from unsupervised to fully supervised settings, using one

or more source (annotated) domains.

Finally, it is crucial to note that translations obtained by the HistoStarGAN model

should not be used for diagnostic purposes. All images are artificially generated, and

the model can perturb diagnostic markers. Thus, the dataset composed of HistoStar-

GAN translations should only be used for general-purpose analysis related to glomeruli

(e.g. counting).

8. Conclusions

The HistoStarGAN model represents the first end-to-end trainable solution for si-

multaneous stain normalisation, stain transfer and stain invariant segmentation. For the

first time, obtaining highly plausible stain transfer from unseen stainings is possible

without any additional change to the model (e.g. fine-tuning). Moreover, the model

achieves new state-of-the-art results in stain invariant segmentation, successfully gen-

eralising to six unseen stainings. The proposed solution is general and extensible to

new stainings or use cases.

Being able to generate diverse translations for a given input, the proposed solu-

tion paved the way to generate KidneyArtPathology, an artificially created and fully

annotated data set illustrating a broad spectrum of synthetic image data ranging from

biologically usable results, to visually plausible but biologically useless output.

However, the obtained virtual staining can realistically change the appearance of

microscopic structures, such as the number of visible nuclei, size of Bowman’s capsule

or membrane thickness. Thus, it is ill-advised to use these translations for applica-

tions that rely on the assumption that the translation process preserves all structures

in the original image. Moreover, such virtually stained images must not be used for
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diagnostic purposes since diagnostic markers can be altered. As such, this study goes

towards saving resources and time for annotating the high-quality datasets required for

developing deep learning based models, not to replace the process of physical staining.

Nevertheless, it remains an open question why the model’s performance varies

across different stainings. One hypothesis is that the model, being based on Cycle-

GAN translations, replicates some of their limitations. However, the influence of these

CycleGAN models and the choice of the stainings used in the dataset remains to be

explored in future work.
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Rémy Vandaele, Jean-Michel Begon, Philipp Kainz, Pierre Geurts, and Louis We-

henkel. Collaborative analysis of multi-gigapixel imaging data using cytomine.

Bioinformatics, 32(9):1395–1401, 2016.

Odyssee Merveille, Thomas Lampert, Jessica Schmitz, Germain Forestier, Friedrich

Feuerhake, and Cédric Wemmert. An automatic framework for fusing information

from differently stained consecutive digital whole slide images: A case study in renal

histology. Computer Methods and Programs in Biomedicine, 208:106157, 2021.

Atefeh Ziaei Moghadam, Hamed Azarnoush, Seyyed Ali Seyyedsalehi, and Moham-

mad Havaei. Stain transfer using generative adversarial networks and disentangled

features. Computers in Biology and Medicine, 142:105219, 2022.

38



Francesco Piccialli, Vittorio Di Somma, Fabio Giampaolo, Salvatore Cuomo, and Gi-

ancarlo Fortino. A survey on deep learning in medicine: Why, how and when?

Information Fusion, 66:111–137, 2021. doi: 10.1016/j.inffus.2020.09.006.

Aman Rana, Alarice Lowe, Marie Lithgow, Katharine Horback, Tyler Janovitz, An-

nacarolina Da Silva, Harrison Tsai, Vignesh Shanmugam, Akram Bayat, and Pratik

Shah. Use of deep learning to develop and analyze computational hematoxylin and

eosin staining of prostate core biopsy images for tumor diagnosis. JAMA Network

Open, 3(5):e205111–e205111, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks

for biomedical image segmentation. In Proceedings of the International Conference

on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages

234–241, 2015.

Pegah Salehi and Abdolah Chalechale. Pix2pix-based stain-to-stain translation: A

solution for robust stain normalization in histopathology images analysis. In Inter-

national Conference on Machine Vision and Image Processing (MVIP), pages 1–7,

2020.

Marin Scalbert, Maria Vakalopoulou, and Florent Couzinié-Devy. Test-time image-
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