
Collaborative Clustering: Why, When, What and How

Antoine Cornuéjols1, Cédric Wemmert2,∗, Pierre Gançarski2, Younès Bennani3

1UMR MIA-Paris, AgroParisTech, INRA - Université Paris-Saclay, Paris, France
2 UMR ICube - Unistra, CNRS - Université de Strasbourg, Illkirch, France

3LIPN - UMR CNRS - Université Paris 13 - Sorbonne Paris Cité, Villetaneuse, France

Abstract

Clustering is one type of unsupervised learning where the goal is to partition the set of objects into groups called
clusters. Faced to the difficulty to design a general purpose clustering algorithm and to choose a good, let alone perfect,
set of criteria for clustering a data set, one solution is to resort to a variety of clustering procedures based on different
techniques, parameters and/or initializations, in order to construct one (or several) final clustering(s). The hope is that
by combining several clustering solutions, each one with its own bias and imperfections, one will get a better overall
solution.

In the cooperative clustering model, as Ensemble Clustering, a set of clustering algorithms are used in parallel on
a given data set: the local results are combined to get an hopefully better overall clustering. In the collaborative
framework, the goal is that each local computation, quite possibly applied to distinct data sets, benefit from the work
done by the other collaborators.

This paper is dedicated to collaborative clustering. In particular, after a brief overview of clustering and the major
issues linked to, it presents main challenges related to organize and control the collaborative process.
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1. Introduction

Unsupervised learning is often defined in contrast with
supervised learning. In supervised learning, the goal is
to make predictions about output value y given an input
object or instance x. This is done through a decision pro-
cedure h : X −→ Y that is learned from a training set
S = {(x1, y1), . . . , (xN , yN )} and some prior knowledge,
where each example of S is composed of an object xi ∈ X
and a corresponding output value yj ∈ Y.

By contrast, the objective of unsupervised learning is
not to make predictions from as yet unknown input values
to output values, but to reveal possible hidden structures
in the available data set, S = {x1, . . . ,xN}. In a way, this
can be compared to signal analysis by which one seeks a de-
composition of the signal into underlying basis functions.
If these putative structures or regularities may sometimes
be extrapolated to make predictions about future events,
this is not the primary goal of unsupervised learning. An-
other crucial distinction with supervised learning is that
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there is no absolute way to measure the relevance of the un-
covered regularities, whatever their form [1]. In supervised
learning, one can use validation sets or cross-validation to
estimate the predictive value of the learned decision func-
tion. If the predictive performance is low, then either the
data or the learning algorithm is wanting. Unfortunately,
there is no equivalent to the predictive performance in un-
supervised learning. The algorithms can only find the kind
of underlying structures that the user has predefined either
implicitly or explicitly in their code. In the best of worlds,
the methods also provides some level of significance of the
discovered structure. But there is no objective way of mea-
suring the value of the findings, that is whether they cor-
respond to some “true” underlying structure of the data
set or if they are just figments of the imagination of the
user and the algorithm chosen. Indeed, the significance
tests that are often used as referees are themselves, by ne-
cessity, biased towards some types of regularities. This is
this property that makes unsupervised learning so chal-
lenging, both to find a solid theoretical theory about what
is a good or best technique, and to apply it with some level
of confidence to data in need of interpretability.

Clustering is one type of unsupervised learning where
the goal is to partition the set of objects into groups called
clusters. These groups can be mutually exclusive or they
may overlap, depending on the approach used. Clusters
are defined by the fact that the objects within are more
similar to each other than to objects from other groups.
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The similarity measure is of course of paramount impor-
tance to define the kind of structures or clusters that can
be uncovered in the data, and hundreds of distances have
been proposed in the literature according to the problem
and context at hand.

Two major approaches of clustering exist: generative
and discriminative, both relying more or less directly on
a chosen distance. The former supposes that a generative
model has been defined, often in the form of a statisti-
cal model, and the goal is to find the model parameters
maximizing the probability that the data was generated
by the model. The latter relies on similarity measures and
on optimization criteria to find groups in the data. In
either case, before an algorithm can be properly defined,
numerous questions have to find an answer.

1.1. The questions raised in Clustering
The exploration of ill-known data sets and the uncov-

ering of hidden regularities are marred with an array of
questions and potential pitfalls.

The question arising immediately is: what is cluster-
ing? Is there a clear definition and hence, hopefully, some
measurable criterion that ought to be optimized?

Intuitively, clustering is the grouping of objects such
that similar objects end up in the same group and dis-
similar objects are assigned to different groups. Formally,
clustering a data set S of N objects means finding a par-
tition {C1, . . . , CK} of S such that:

K⋃
k=1
Ck = S,

where the groups Ck are:

1. As homogeneous as possible (small intra-group vari-
ability)

2. As distinct as possible (large inter-group variabil-
ity)

Most clustering techniques output partitions (disjoint clus-
ters):

Ck ∩ Ck′ = ∅ if k 6= k′

which is not always desirable.
For all its seemingly clear definition, clustering is an ill-

defined problem. One fundamental issue is that clustering
is based on the idea that similar objects should be clustered
together while dissimilar objects should be separated in
different groups. But, mathematically, similarity is not a
transitive relation, while belonging to the same cluster is.

Thus, on Figure 1, which seems a reasonable clustering
of the given data points, x1 appears to be close to x2,
and x2 to x3 and so on until x11, and, as a consequence,
they should all be put in the same cluster. But, if the
shown clustering is correct, it violates the first requirement
(all similar elements should end up in the same cluster):
x5 and x6 should belong to the same cluster; as well the
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Figure 1: Clustering is an ill-defined problem

second one (dissimilar elements should be put in distinct
clusters): x5 and x3 should not belong to the same cluster.

There is therefore an ambiguity in the definition of
clustering that can only be removed through some addi-
tional bias. For instance, the distance used for measuring
the inter-group dissimilarity (e.g. single linkage, average
linkage, complete linkage, and so on) will favor one type
of structure over others. However, this bias impacts the
clustering process and not the optimization criterion which
remains therefore intrinsically ambiguous.

Another major source of problems is that an ideal clus-
tering would entail the exploration of an impossibly large
space of possible answers. Thus, the number of partitions
of N objects in K groups is:

SN,K = 1
K!

K∑
k=0

(−1)k (K−k)N

(
K

k

)
' KN

K! as N →∞

(1)
If the number of partitions K is not known beforehand,

then the number of all partitions to be examined is given
by the Bell number:

BN =
N∑

k=1
SN,k (2)

As an illustration, a computer handling one million
partitions per second would take more than 147,000 years
to study all partitions of a set of only 25 elements: there
are indeed 4,638,590,332,229,999,353 possible partitions of
such a set!

One therefore has two perspectives: either finding an
optimization criterion such that the optimization problem
becomes convex in the search space, or designing a heuris-
tic search algorithm that can search the space of solutions
efficiently and, to some extent, escape local minima. No
convex optimization criterion is known, and thus one must
solve the second alternative. As it happens, most of the
resulting optimization problems are NP-hard.

To sum up, clustering, is not only an ill-defined prob-
lem [2, 3], it is also an ill-posed problem that requires some
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prior bias in order to be practically solved. Different al-
gorithms may yield dramatically different outputs for the
same input sets. Additionally, the entailed computational
costs are huge if no proper heuristics is employed.

Consequently, several concrete questions must be an-
swered before a clustering method can be defined and ap-
plied.

1.1.1. Formally defining the types of clusters looked for
In clustering, we wish to organize the data in some

meaningful way, but “meaningful” depends on the context
and on our focus of interest. The same given set of objects
can be clustered in various different meaningful ways. For
instance, we could be interested in categorizing speakers by
the language they speak, or by the topic of discussion, or
by gender. Accordingly, one would concentrate on different
descriptors in the spoken signal, and use different distances
in order to group the speakers.

The distance is a critical part in the definition of what
types of clusters will be looked for. Actually, in many algo-
rithms, several distances must be decided upon: a distance
between instances in the input space, but also a distance
between an instance and a cluster, and a distance between
clusters. As is well-known by practitioners, any single dif-
ference in these choices points may alter considerably the
result of a clustering.

Another problem is the choice of the relevant number of
clusters when the number of “true” underlying categories
is not known beforehand. This is related to the model
selection problem [4]. Often, what is looked for are clus-
ters that are compact (within inertia) and well separated
(extra-inertia). It happens that these two requirements
tend to be inversely correlated, when one improves, the
other deteriorates. The relative weights put on these as-
pects control therefore the result in the same manner that
the choice of the hypothesis space or of a regularization
term controls the result in supervised learning. However,
unlike for supervised learning, there is no ground truth in
the data that can help choosing the right “model”. Hence,
the temptation not to have to choose, which is one mo-
tivation for ensemble methods in clustering, as described
below.

1.1.2. Organizing the search space
Once the type of clusters that is looked for in the data

is outlined and similarity measures have been defined ac-
cordingly, it remains to set up how the space of possible
solutions will be searched. Because it is impossible to eval-
uate the whole set of solutions, it is necessary to devise
algorithms that perform local search. Some, like hierar-
chical ascendent clustering, iteratively merge the clusters
obtained at one step to get larger clusters at the next step
until a stopping criterion is met. Other, like k-means, are

conspicuously trying to optimize a criterion, such as:

Gk−means((S, d), (C1, . . . , CK)) = Argmin
c1,...,ck,...,cK

K∑
k=1

∑
x∈Ck

d(x, ck)

(3)
where d stands for the distance used and the ck is the
centroid of the cluster Ck. The number of clusters has to
be given a priori.

But because this type of criterion is NP-hard to satisfy,
an iterative algorithm, the k-means algorithm, is used in-
stead. Its output is generally highly dependent upon the
initialization of the centroids ci.

Aside the criterion and the search algorithm, the space
of solutions plays an important role too. The number of
attributes, their degree of (in)dependence, the normaliza-
tion used, all these aspects may strongly affect the result
of learning. Furthermore, when dimensionality increases,
the volume of the space increases exponentially causing
the available data to become extremely sparse. One un-
expected and frightful consequence is that, for most data
distributions, the relative difference of the distances of the
closest and farthest data points of an independently se-
lected point goes to zero as the dimensionality increases.
Consequently, any algorithm that bases its analysis on the
distribution of distances is doomed to fail at finding struc-
tures in the data if there is no truly marked structure. Fur-
thermore, the computational complexity of finding clusters
is in O(ND) where D is the dimension of the space. Since,
in addition, the set of all possible structures is extremely
large (see equations 1 and 2), and the optimization crite-
rion generally entails the existence of a complex landscape
with many local optima, the algorithms for exploring such
spaces must, per force, use heuristics and possibly itera-
tive procedures. In turn, this often requires that several
parameters be set and tuned by the user.

1.1.3. The validation
Because clustering relies on many a priori choices (i.e.

similarity measures, quality function, heuristics, parame-
ters values, and so on) and since there is no possible post
validation with test data where true classes can be com-
pared with the classes discovered by the algorithm, the
validation of the output of clustering methods is a thorny
question. The user is faced with the interrogation: does
the structure produced by the method “really” exist in the
data, or is it merely an artifact of the clustering method?

Some principled statistical procedures have been pro-
posed for testing the the significance of a clustering result
[5]. They are based on the idea of measuring deviations of
some statistical quantities, like the largest nearest neigh-
bor distance, from what would be expected if the data
points were homogeneously distributed in the input space.
However, the approach has several limits. First, the statis-
tical quantities suggested are not general, they are biased
towards the discovery of convex clusters. Second, the con-
vergence rate of the statistical test is so slow (O(logn)−1)
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that it requires enormous quantities of data to give some
useful clues. Finally, it requires that the user is able to
guess some quantities, like the volume in which lies the
data, hard to compute when the input space is not low
dimensional.

Similarly, bayesian approaches to model-based cluster-
ing (e.g. mixture of Gaussian distributions) have been
put forward to yield validity measures such as the Bayes
factor [6]. However, these proposals are dependent upon
some preconceived models of the world, and they are of-
ten based on asymptotic approximations that are hard to
satisfy in real applications.

Short of a satisfying theoretical ground, a whole area
of methods and indexes have been designed in order to
assess the validity of clustering results. However, all are
arbitrary in some sense, in that they favor one type of
structures over others, and one must be very careful not to
over-interpret seemingly optimistic results from a cluster-
ing quality measure (see [7] for an overview of assessment
methods for clustering and their limits).

Because all clustering methods are based, whether im-
plicitly or explicitly, on a priori assumptions about the
data-generating process, or about the interesting struc-
tures that ought to be found, the final judge is often the
domain expert interested in what the algorithm has dis-
covered in the data. The expert may thus evaluate the
output, and suggests modifications of the a priori choices
in order to test the robustness of the findings. Indeed the
variability of the results when the data sampling, or the
parameter values, or the clustering algorithm is changed is
often taken as an indication of the reliability of the struc-
ture uncovered in the data.

To measure this variability, several indexes exist: Ex-
ternal indexes (used to measure the extent to which cluster
labels match externally supplied class labels), of which a
prominent one is the Rand index [8]; Internal indexes (used
to measure the goodness of a clustering structure without
respect to external information); Relative indexes (used
to compare two different clusterings or clusters). Unfortu-
nately, even if the stability of the clustering results is often
a good indicator of the fact that the uncovered structure
is really present in the data, it can also be misleading un-
der certain circumstances. Indeed the shape of the data
manifold can cause a given clustering method to converge
strongly towards certain suboptimal solutions.

Overall, one guide for evaluation that is often found
useful, and is at the basis of some recent attempt at putting
clustering on a sound foot, is the fact that the cluster
results are robust to variations either in the data (aka.
permutation invariance) and/or in the algorithms, that is
variations in their principles, or their parameter values,
or the initializations. This forms one justification for the
recourse to ensemble methods for clustering, as will be
described below.

When taken together, the issues facing a practitioner
are numerous, and, correspondingly the number of choices

to be made and parameters to be set. And because the
results output by the clustering algorithms are generally
very dependent upon these choices, they have to be made
cautiously. However, it is often difficult to identify the
ideal recipe for a given problem.

1.2. Combining Clusterings
Faced with the difficulty of choosing a good, let alone

perfect, set of criteria for clustering a data set: distances,
optimal number of clusters, measures of compactness, and
so on, a temptation is to avoid as much as possible to have
to commit to pre-arranged methods or parameters. One
solution for this is to resort to a variety of clustering pro-
cedures based on different techniques, parameters and/or
initializations, in order to construct one (or several) final
clustering(s).

Because, in addition to this motivation, it is increas-
ingly realized that it can be interesting to detect multiple
cluster structures that describe alternative aspects in the
same data set rather than trying to find “the” best cluster-
ing, a recent and very active stream of research has focused
on Multiple clustering which is devoted to capture multi-
faceted information in a data set. Accordingly, the goal
is no longer to get a single overall view of the data, but
instead of favoring multiple non redundant groupings.

Meanwhile, the success of ensemble methods in super-
vised learning has lent credit to the power of panels of
“experts” that combine their beliefs or decisions in order
to reach an overall solution. And while it is far from ob-
vious that the same success can be ensured in the context
of unsupervised learning, many works have been inspired
by this idea.

Accordingly, approaches for combining clusterings have
emerged that bring together clusterings based on differ-
ent sources and/or different clustering algorithms [9]. The
hope is that by combining several clustering solutions, each
one with its own bias and imperfections, one will get a bet-
ter overall solution [10]. The main idea is that fortuitous
and not meaningful solutions will cancel each other out,
and that the real structure in the data should emerge as
the most represented in the outputs of the algorithms be-
cause it would be the more robust to variations in the
algorithms’s settings.

It is useful to characterize multiple clustering based
methods by looking at three sets of possibilities:

1. Either the clustering algorithms work sequentially
or they work in parallel.
In sequential approaches (Figure 2-a), like cascad-
ing [11], each method in turn may use information
provided by the previous clustering system(s) while
possibly exploiting new additional data. In both the
sequential and parallel regimes, one question is to
determine when to end the procedure, which ideally
should converge to a fixed point.

2. The clustering algorithms work in isolation versus
in interaction:
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...
(a) Sequential clustering

(b) Cooperative clustering

...

(c) Collaborative clustering

Figure 2: Different types of combinations of clusterings

• In cooperative clustering (see Section 1.2.1), each
clustering algorithm produces its result inde-
pendently. The final clustering is computed in
a post-processing step, and the only exchange of
information is about when the individual pro-
cesses are completed, so that post-processing
can start.

• In collaborative clustering (see Section 1.2.2),
the group solves together problems defined and
imposed by the central controller, affecting an
individual task to each learner. Interactions are
recurrent between team members, responsibil-
ity is collective, the action of each teammate is
geared to the performance of the group and vice
versa.

3. Each algorithm works on thewhole dataset or only
on a subpart. The advent of “big data” (large data
sets often described in high-dimensional spaces) ren-
ders distributed computing quite alluring, and some-
time compulsory. For instance, for reasons of pri-
vacy, ownership or storage, it can happen that the
data cannot be pooled together. If each algorithms
accesses only a partial view (different features), this
situation is called vertical clustering. If all the classi-

fier work using the same set of features, but only on a
subset of the dataset, then one is faced with horizon-
tal clustering [12]. Horizontal and vertical cluster-
ings can be combined in one application (see Section
2). For instance, several health centers located in dif-
ferent countries may want to discover structures in
the diseases of the citizens of the world in an attempt
to identify latent causes, using data on different pop-
ulations and exploiting multiple partial information
sources at possibly varying resolutions.

1.2.1. Cooperative Clustering
In the cooperative clustering model, a set of clustering

algorithms are used in parallel on a given data set. The di-
versity of the local results is obtained through the diversity
of the local algorithms, their parameter values, and their
initializations. Once all local computations are completed,
a master algorithm takes control and combines the local
results to get an hopefully better overall clustering. The
resolution of the possible conflicts between the local solu-
tions requires an algorithm that is able to compare results
that may differ in their format (e.g. different numbers of
clusters, different degrees of belief associated with the re-
sults, ...) and to find a consensus solution that minimizes
the overall violation to the local results (Figure 2-b).

The cooperative framework is related to the ensemble
methods developed for supervised learning. In these ap-
proaches, a set of (diverse) classifiers is learned and the
classification of new data points is obtained by taking a
(weighted) vote of their predictions [9]. Bayesian averag-
ing can be considered as a precursor method. Numerous
new ones have been developed, from error-correcting out-
put coding to Bagging, and Boosting [13, 14, 15, 16] and
their application in various domains have become routine
with often good results.

Ensemble methods are easy to implement in supervised
learning for two reasons. First, it is straightforward to
define a combination of predictive functions hi to get an
aggregated prediction function H. For instance, a linear
combination is used in boosting, which, for a classification
task gives:

H(x) = Majority
{ P∑

i=1
wi hi(x)

}
where wi is the weight of classifier hi.

Second, it is simple to measure both the performance
of individual prediction functions hi and the diversity of
the set of the functions that are candidate for being part
of the combined global decision function.

Things are not so straightforward in unsupervised learn-
ing. Here, each individual solution is a soft or hard par-
tition of the data set. How to combine these partitions
has no obvious answer. For instance, it is not practical
to assign each example xj to some “majority cluster”, i.e.
the cluster where the majority of the clustering algorithms
would have put xj . The first obstacle indeed being that,
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usually, there is no direct correspondence between the clus-
ters found by the local algorithms. Searching for a corre-
spondence between each cluster Cp

k of a local clustering Cp

and each cluster Cq
l of another local clustering Cq, and do-

ing this for all pairs of clusterings (Cp, Cq) taken in the
set C of local clusterings is a daunting task with no simple
and practical solution. In response, various heuristic pro-
posals have been made for these problems, among them,
the following:

• [17] introduced a new voting method to perform a
combination of the results even when there is no
strict bijection between the clusters but only a “good”
correspondence.

• [18] presented three voting iterative methods: Iter-
ative Voting Consensus (IVC), Iterative Probabilis-
tic Voting Consensus (IPVC) and Iterative Pairwise
Consensus (IPC). These algorithms use a feature
map built from the set of base clusterings and ap-
ply an EM-like consensus clustering.

• [19] proposed a cumulative voting method to come
to a consensus from partitions with a variable num-
ber of clusters. They described several cumulative
vote weighting schemes, with the corresponding al-
gorithms, to compute an empirical probability dis-
tribution summarizing the partitions.

• [20] tackled the problem of correspondence by using
the cooccurrences of pairs of patterns in the same
cluster as votes for their association. In this frame-
work, the data partitions are mapped into a N ×N
co-association matrix of patterns which represents a
new similarity measure between patterns. The final
clusters are obtained by applying a MST-based clus-
tering algorithm on this matrix.

• [21] presented a cooperative clustering model mainly
based on four components (1) Co-occurred sub-clusters,
(2) An histogram representation of the pair-wise sim-
ilarities within sub-clusters, (3) The cooperative con-
tingency graph, and (4) The coherent merging be-
tween the set of histograms. This kind of Coopera-
tive Clustering model is based on finding the inter-
section between the multiple clusterings in terms of
a set of sub-clusters. These sub-clusters are repre-
sented by similarity histograms. The model applies
a homogeneous merging procedure on the coopera-
tive contingency graph to attain the same number
of clusters by carefully monitoring the pairwise sim-
ilarities between objects in the sub-clusters [22].

Overall, research in ensemble clustering has blossomed
over the recent years [23, 24, 25, 26, 27, 28, 29, 16].

Ensemble (and cooperative) clustering follow the lines
sketched in Algorithm 1.

Algorithm 1: Algorithm for ensemble clustering
Data: The set S of data points

P algorithms: {Ai (1≤i≤P ) }
Result: A clustering G of the whole data set
Run in parallel the P algorithms Ai each on the
set S ;
Compute all the P clusterings Ci ;
Compute the consensus solution G from
{Ci (1≤i≤P ) } ;

Algorithm 2: Algorithm for collaborative clus-
tering
Data: P subsets of S not necessarily disjoint:

{Si (1≤i≤P ) }
P algorithms: {Ai (1≤i≤P ) }

Result: A clustering G of the whole data set
Run in parallel the P algorithms Ai each on its
own data set Si ;
Compute all the P clusterings Ci ;
repeat

Compute the consensus solution G from
{Ci (1≤i≤P )}
or local consensus solutions ;
Exchange information between the/some
algorithms ;
Compute new clusterings Ci ;

until stabilization of the global clustering or of the
local solutions;

1.2.2. Collaborative Clustering
By contrast to the cooperative clustering model, the

collaborative model does not seek an overall hopefully bet-
ter clustering of a given data set S through the combi-
nation of individual solutions. In the collaborative frame-
work, the goal is that each local computation, quite possibly
applied to distinct data sets, benefits from the work done
by the other “collaborators”. This can be done through
the exchange of information about the local data, or the
current hypothesized local clustering, or the value of one
algorithm’s parameters. The validity of the approach rests
on the assumption that useful information can be shared
among the local tasks.

This scheme leads naturally to distributed implemen-
tations of the computations, but instead of a two step pro-
cess, as in the cooperative framework, it generally entails
several iterations at each local node because convergence
of the consensus solution requires several passes of the al-
gorithm. Indeed, in addition to the problem of what infor-
mation to exchange between agents, one question is how
to measure the evolution at each node, and when to stop
each local process.

Collaborative clustering is realized along the lines of
Algorithm 2.
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The sequel of the paper is dedicated to collaborative
clustering. Section 2 gives the flavor of some issues raised
in collaborative learning through simple examples. In Sec-
tion 3, the questions of why and when collaborative clus-
tering should be expected to work are examined. Then,
Section 4 is devoted to the questions of how to organize
and control a collaborative process. Section 5 presents
previous works related to collaborative learning that have
bearings on the issue of collaborative clustering and re-
ports some applications.

2. Simple illustrations of Collaborative Clustering

There are two kinds of information that clustering al-
gorithms use and update during their computations: in-
formation about the membership of each data point (e.g.
x23 ∈ C2 where C2 is the label given by one algorithm to a
cluster), and information about internal parameters, like
the current number of clusters envisioned, the coordinates
of prototypes, and so on. Exchanges of information can
take place at these two levels.

2.1. Examples of collaboration
In order to illustrate the issues raised by Collaborative

Clustering, it is useful to contemplate simple examples.
We will consider different scenarios in turn:

1. The algorithms have access to the same dataset: same
objects and same attributes.

2. The algorithms have access to the same dataset, but
they only see partial views (a.k.a. vertical clustering
scenario).

3. The algorithms have access to different objects sup-
posedly drawn from the same distribution (virtual
dataset) measured with the same set of attributes
(horizontal clustering).

4. The algorithms have access to different objects sup-
posedly drawn from the same distribution (virtual
dataset) measured with different sets of attributes.

To simplify the discussion, we will suppose that all
the algorithms are of the k-means variety, but possibly
with different values of k and/or different definitions of
distances (e.g. `1 distance, or `2, or ...). They may also
start from different initial states. Thus, they can obtain
different results even on the very same data set. These
algorithms can communicate:

• the number of clusters k they are contemplating

• the proportion of objects affected to each cluster

• the identifiers of the objects in each cluster

• the coordinates of the prototypes µi that define each
cluster Ci.

However, they do not change their own settings: k and the
distance used.

Now, for each scenario above, we will examine what
communication could be set up among the algorithms in
order to carry out a collaborative clustering.

Scenario 1: Same data
This scenario is similar to the one of ensemble clus-

tering where a consensus solution that escapes the limits
of each biased solution is hoped for. The difference with
ensemble clustering may lie in the protocol of exchanges
between the learning algorithms. In ensemble clustering,
each algorithm computes its own local solution, and then
a master algorithm computes a consensus solution. In
collaborative clustering, there is no master algorithm and
the communications between algorithms can alter the lo-
cal computations for a solution. Furthermore, one can
be happy with different outputs from the local algorithms
since alternative clusterings for the same data may well
be what is looked for. Collaborative clustering is thus a
means used to help local algorithms to escape local minima
and discover better solutions.

When the algorithms can share the identifiers of the ob-
jects, it is an easy matter to compare cluster memberships.
For instance, in Figure 3, we have 8 data points and two
clustering algorithms A and B. The cluster memberships
can be compared via the matrix:

Algorithm x1 x2 x3 x4 x5 x6 x7 x8
A Ca Ca Ca Ca Ca C′a C′a C′a
B Cb Cb Cb C′b C′b C′′b C′′b C′′b

In this case, it is apparent that the cluster Cb found
by algorithm B is compatible with cluster Ca found by al-
gorithm A since Cb ⊆ Ca. Similarly, C′b ⊆ C′a. However,
there is a conflict regarding the cluster C′′b since it has an
intersection with both Ca and C′a. Aware of this conflict,
each algorithm could take steps to eliminate it. For in-
stance, algorithm A could start its next loop by putting
the offending point x8 in cluster Ca before updating the
prototype µa, therefore biasing its own solution toward a
solution compatible with the current one of algorithm B.
Simultaneously, algorithm B could put x8 in cluster C′b. Of
course, if this is done simultaneously by both algorithms,
the conflict will persist.

It is apparent that this naïve collaborative approach
needs much work out before it can be implemented and ex-
tended to more than 2 algorithms. First, the communica-
tion bandwidth tends to increase as O(P 2) where P is the
number of participating algorithms. Second, the compu-
tation of the “offending” data points is more complicated
than the simple example above shows. Finally, it is not
obvious to define collaboration so that the whole process
tends to discover stable local solutions. Indeed, a change
in the solution of algorithm Ai can trigger changes in so-
lutions by other algorithms which themselves can modify
the solution of Ai. These kinds of loops are not easy to
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Figure 3: (Left) the data set shared by the clustering algorithms,
here in R2. (Right) The clustering found by algorithm A: Ca and C′a,
and by algorithm B: Cb, C′b and C′′b .

control if an energy function of the whole system cannot
be identified and if the overall collaboration scheme is not
proved to lead to a decrease of this energy function.

The communication between the algorithms can also
involve other characteristics than the memberships of the
objects. For instance, the algorithms could also exchange
the coordinates of their prototypes together with the weights
of these prototypes given by the proportion of the objects
they represent.

Coming back to the data set of Figure 4, algorithm
A could inform algorithm B that it has two prototypes
with coordinates µa = [µ(1)

a , µ
(2)
a ]> and µa′ = [µ(1)

a′ , µ
(2)
a′ ]>

and weights 5/8 and 3/8. Algorithm B in turn would
communicate µb = [µ(1)

b , µ
(2)
b ]>, µb′ = [µ(1)

b′ , µ
(2)
b′ ]>, and

µb′′ = [µ(1)
b′′ , µ

(2)
b′′ ]> with respective weights 3/8, 2/8 and

3/8.
In this case, this would push algorithm A toward the

absorption of the data point x5 in the cluster Ca, ending
the conflict with the solution of algorithm B.

Again, this gives only an outline of what is involved
when exchanging information about the models themselves,
and not the data points. For instance, if an algorithm takes
into account the prototypes computed by other algorithms,
what should be the weights of these prototypes?

Scenario 2: Same objects, different attributes

x
x

x x

x

x x

x

x
x

Figure 4: (Left) The prototypes computed by algorithm A at time
step t. (Center) The prototypes computed by algorithm B. (Right)
The updates of the prototypes of algorithm A when taking into ac-
count the prototypes communicated by algorithm B.
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Figure 5: (Left) The data set and the clusterings by algorithms
A and B. (Right) The corresponding consensus matrix. The shaded
parts denotes the objects for which there is an agreement between
the clusterings.

When the algorithms can share the identifiers of the
objects but the attributes they measure are different, they
can no longer use information about the centroids com-
puted by other algorithms. However, they can still com-
pare the way they group objects.

One way of doing this is to use consensus matrices [30].
A consensus matrix for a set of algorithms is a N × N
matrix where each element M(i, j) is the frequency that
the objects i and j are put together in the same cluster
by the algorithms. Ideally, if the algorithms all agreed on
the clustering, then we would haveM(i, j) ∈ {0, 1},∀i, j ∈
{1, N}, and it would be easy to recover the clusters. Any
departure from this ideal case is a sign of disagreement
between the clusterings made by the algorithms.

For the data set depicted in Figure 3, the consensus
matrix is given in Figure 5. Again, it is apparent that the
one offending object is x8, so that this is where the two
collaborating algorithms should focus in order to improve
their agreement.

Scenario 3: Different objects, same attributes
When different objects are considered by the various

algorithms, a collaboration has meaning only if it is as-
sumed that the subsets of data are drawn from the same
distribution.

A general case is when there are partial intersections
between the subsets of data that the algorithms consider.
Then, consensus matrices can still be computed, using a
normalization of the entries M(i, j) taking into account
the number of times the two objects of the pair have been
considered together by the algorithms. This can be used
as a basis for the detection of disagreements triggering
further adaptations.

Another type of collaboration involves the exchange of
the coordinates of the centroids found by the collaborating
algorithms, which can be done since the algorithms share
the same input space. As was indicated in the scenario
1, the exchange of centroids may allow for modifications
that tend to reduce the disagreement between the solutions
found locally.

Scenario 4: Different objects, different attributes
Interestingly, even if the attributes considered by the

various algorithms are not the same, the exchange of the

centroids’s coordinates can still be a channel of exchange as
long as there is still some non empty intersection between
the subsets of attributes. Of course, the smaller the in-
tersection, the higher the risk that the remaining common
attributes are in fact not relevant to the true underlying
regularities, and the higher the risk of exchanging noisy
signals.

The most difficult case is when both the subsets of ob-
jects and the subsets of attributes are disjoint. Then the
only bits of information that can be of interest to the var-
ious algorithms is the relative proportions of the clusters
found at each location. If for instance, algorithm A has
found the proportions {0.25, 0.75} for two clusters and al-
gorithm B has found {0.10, 0.13, 0.77} for three, then it is
not absurd to suppose that the clusters found by the two
algorithms indeed can be put in close match. However,
that kind of simple situation is just too simplistic to be
realistic. In most cases, a much more involved analysis
should be carried out, with likely weak results so far as
the collaboration is concerned.

2.2. Illustration: two algorithms collaborating, one well-
informed and the other not

In collaborative clustering, it is hoped that by combin-
ing several algorithms, each with its own data source and
characteristics, one gets better results than by using each
algorithm independently. But, is this hope granted?

Taking a very simple setting, what happens if two clus-
tering algorithms are made to collaborate, both applied to
the same objects, but using different attributes (vertical
clustering)? And particularly, what happens if the set of
attributes used by one algorithm, Agood is relevant to the
underlying existing structure of the data set, while the
other subset, used by a Abad, is totally irrelevant, contain-
ing only a noisy signal?

In the following, the algorithm F-VBGTM [31] was
used on a split Waveform data set. This data set was cho-
sen because of its structure: it contains 5,000 observations
described by 21 relevant variables and 19 noisy variables.
The data set was split into two subsets, the first one de-
scribed using the relevant variables (dimension 5, 000×21)
and the second one using the useless variables (dimension
5, 000× 19).

The clustering results by F-VBGTM on the two subsets
of the Waveform data set without collaboration are shown
in Figure 6. It is apparent that algorithm Agood, using
the relevant variables, was able to capture the underlying
structure of the data set, while algorithm Abad produced
essentially a random solution.

Here an oriented collaboration scheme was employed,
in which the results of algorithm Ai was sent to algorithm
Aj (j 6= i) before its own processing of the data set. As
could be expected, when algorithm Abad influences algo-
rithm Agood, the structure discovered is seriously impaired
(left on Figure 7). On the contrary, algorithm Abad bene-
fits a lot from information sent by Agood as shown on the
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Figure 6: Visualization of the two subsets of the Waveform data
set using posterior mean projection, with labels obtained using F-
VBGTM before collaboration. We can see good clustering results on
the first subset (left). The results of clustering on the second subset
of noisy variables are bad (right).

Figure 7: Effect of the Collaborative Clustering. When Abad sends
results to algorithm Agood, the uncovered underlying structure is
severely impaired (left figure). By contrast, clustering is much im-
proved when Agood sends information prior to the data processing
of Abad (right figure).

right of Figure 7. These results are only qualitative, but
they show the potential for harmful as well as beneficial
collaboration between clustering algorithms.

3. Why and when collaboration should be benefi-
cial?

In cooperative clustering, the goal is to find a structure
in a data set using several algorithms that have access
to the whole data set. Therefore the notion of consensus
among the individual solutions is central in order to control
the cooperative process. And while the measurement of
consensus can depend on the specificities of the application
domain, it is still a relatively easy matter to define such
measures.

The situation is quite different in collaborative clus-
tering where the goal is to identify structures in each of
the local data sets considered by the various algorithms.
There, it is more problematic to ensure that collaboration
can bring improvement locally, and it is also much more
difficult to control the process since the notion of global
consensus is no longer operative. Intuitively, the collabo-
ration is valuable if the final local clusterings have higher
quality than if there had been no exchange of information
between the local processes.

The potential benefits of collaboration can be due to
three causes:

1. The fact that more data is better. One can hope
therefore that other algorithms bring more informa-
tion about the data generating process than is locally
available.

2. The fact that perturbations can help an algorithm to
escape local optima.

3. The fact that it might be profitable to modify the
bias of a given algorithm by feeding it with external
information coming from algorithms that may have
different biases.

Note that identifying these three possible reasons for
benefiting from collaborative clustering does not translate
trivially into an overall control procedure that would lead
to better performance.

First, determining if one of these three situations is
valid in one’s current context is not obvious. Second, even
if it is established that one, or more, of these three in-
gredients is/are present in some collaborative clustering
scheme, none of these three potential causes is guaranteed
to bring improvements. Indeed, a local algorithm that is
working on its own data set can only benefit from infor-
mation coming from another algorithm if the data set of
the latter shares enough regularities with its own data set.
Likewise, perturbations can help the exploration process
of an algorithm, but it can also hamper it if they draw it
to poor regions of the search space. Finally, and similarly,
there is no a priori reason to believe that external infor-
mation that in effect modifies the optimization criterion of
the local algorithm, modifies it in the right direction.
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Therefore, extreme attention must be taken in order
to ensure that the collaborative process can improve the
performance of each local algorithm, and the controlling
strategy must be carefully crafted. The lack of a natural
notion of overall consensus makes it all the more compli-
cated to achieve.

In the following, we draw attention to each of the three
possible causes in turn. And for each of these, we discuss
why the outcome should be a benefit, and how could a
control procedure become aware of this improvement.

3.1. More data is better
More (training) data entails in general that a better

solution is reached by an inductive procedure, be it su-
pervised or unsupervised. This is because considering a
larger data sample reduces the variance, and thus the ap-
proximation error while leaving the bias, or approximation
error, untouched. In the case of collaborative clustering,
more data means more unlabeled data.

Let us suppose that the data generating process as-
sociated with the local algorithm is characterized by the
distribution PX (e.g. the distribution that characterize
the patient in a given hospital), then the incoming unla-
beled data (or its model as sent by the collaborative algo-
rithm(s)) can be useful insofar as its (unknown) marginal
distribution with respect to the description space X of the
local algorithm is equal, or very close, to PX . For instance,
this is what would happen if the incoming data from an-
other hospital describes patients that have the same distri-
bution of symptoms than the patients at the local hospital,
at least along the dimensions measured at the local hospi-
tal.

If this property is warranted, then the local algorithm
should benefit from the incoming data, in that it should
return a better structure over the local data set. It is
expected that the clusters over the local data should be of
better quality, at least with respect to the bias enforced
by the local algorithm.

One problem is to ensure that the incoming data in-
deed obeys the same distribution. Measures of divergence
of probability distributions such as Kullback-Leibler diver-
gence, relative entropy, information gain and so on can be
of use in this respect [32].

3.2. Incoming information can help one participating al-
gorithm to escape local optima

Inductive algorithms evaluate the level of structure of
the data set using some inductive criterion. In the case
of supervised learning, this is realized generally through a
regularized empirical risk measure:

R̂(h) = 1
m

m∑
i=1

`(h(xi), yi) + reg(h)

where there are m labeled data points (xi, yi), ` is a loss
function that penalizes incorrect predictions h(xi), and

reg(h) is regularization function that usually penalizes non
smooth functions h.

In the case of unsupervised learning, inductive criteria
are often related to some measure of the compactness and
distinctness of the sub structures that one is interested in
discovering in the data. For instance, in the case of the k-
means algorithm the criterion takes the form of Equation
3 of section 1.1.2:

Gk−means((S, d), (C1, . . . , CK)) = Argmin
c1,...,ck,...,cK

K∑
k=1

∑
x∈Ck

d(x, ck)

where d stands for the distance used and the ck is the
centroid of the cluster Ck.

Thus, in principle, an unsupervised learning algorithm
explores the parameter space in order to minimize the
posited ideal inductive criterion, and may fall into local
minima. Any source of perturbation could therefore help
the algorithm to escape these traps, and information com-
ing from other collaborative algorithms may play the per-
turbative role.

Ideally, it would be easy to detect if the information
communicated by another algorithm is useful or not, that
is if it allows the local algorithm to escape suboptimal
minima. It would suffice to track the value of the criterion.

However, a large part of the unsupervised algorithms
are heuristic in nature, and they do not directly opti-
mize an inductive criterion. Rather, as is the case for
the k-means algorithm, they follow a myopic and itera-
tive process with no explicit optimizing criterion. As a
consequence, it might be difficult to assess whether the in-
coming information is useful or not. And in the absence
of such insurance, it is quite possible that the incoming
information pushes the exploration towards poor regions
of the space of solutions. The difficulty stems from the
difference between ideal inductive criteria and the true,
heuristic, optimization taking place in the learning algo-
rithm. There is need here for more research investigating
this issue, but some works are interesting in this respect
[33, 34, 35, 36, 37].

3.3. Incoming information modifies the bias of one partic-
ipating algorithm

Suppose that the algorithm A is biased towards the dis-
covery of convex subgroups in the data while algorithm B
looks for threadlike structures. When algorithm A sends
information to algorithm B, in the form, for instance, of
the data points with labels corresponding to the discovered
structures, then algorithm B will group together points
that would not be grouped by algorithm A. If algorithm A
takes the groups of algorithm B as suggestions that should
be considered to some extent in order to form groups, then
this effectively modifies the inductive bias of algorithm A.
The shapes found will tend to be not as convex as they
would in the absence of the information coming from al-
gorithm B.
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But why would that be an interesting modification of
the initial bias rather than a damaging one? And how
could one assess the merit, if any, of such a modification?

Again, we are drawn back to the issue of evaluating
the appropriateness of a clustering method, a question for
which there does not exist a definite answer.

In addition, the fact that each local algorithm is influ-
enced by the results of other algorithms and affects them
in return, causes the overall process to be recursive with
no obvious terminal fixed point. The analysis of such al-
gorithms is thus delicate to carry out.

One paradigmatic illustration of collaborative approaches
is the “blackboard” architecture developed in the Hearsay
II system during the 1970’s [38, 39, 40], itself influenced
by the Pandemonium multi-agent system of Selfridge [41].
In these systems, a set of modules, each dedicated to a
subtask and a domain knowledge, e.g. phonemes identifi-
cation, word recognition, syntax, phrase, ..., analyze sep-
arately the incoming voice signal, make hypotheses about
the utterances and post these partial and uncertain hy-
potheses on a “blackboard” so that other modules can use
them as input and can raise or lower their confidence. A
result is output when a coherent solution is found with
enough confidence level.

4. Collaborative Clustering: the What and How
issues

Given that collaborative clustering is defined by the
fact that a set of “base methods” or “experts” exchange
information while they perform their local task, informa-
tion that may influence their running, a set of questions
arise in order to implement such collaborative methods.
Among them, and quite prominent are:

1. What information should (optimally) be exchanged
between the algorithms?

2. How to measure the diversity of the methods (agree-
ment)?

3. How to measure the performance of each method?
4. How to measure the quality of the common goal if

there is one?
5. How to control the collaborative process? This, in

turn, entails questions about the estimation of de-
gree of advancement by the algorithms and about the
measurement of diversity of the local results and/or
local algorithms.

4.1. Communication: what should be transferred between
experts?

The base methods can exchange information of differ-
ent types:

1. About the candidate structures hypothesized in the
data sets.

2. About the memberships of the instances in the data
set.

Information on the structure.. The exchange of informa-
tion can bear on defining characteristics of the structure
that are looked for by the “experts”. For instance, the
contributing algorithms could communicate about the at-
tributes they have found useful, or about the distance(s)
they use, or the number of clusters they contemplate. This
will be especially helpful in horizontal clustering where the
local methods do not operate on the same data points, or
even in the same input spaces.

One advantage of this communication channel is that it
preserves the secrecy of the objects. It is also parsimonious
in that it usually involves only a few values.

Information on the data points.. The other main option
is to exchange information about the hypothesized mem-
bership of the data points. Often, this is done through
the communication of the subgroups of objects found so
far. Of course, this requires that there exists an agree-
ment on the identity of the objects. One difficulty is that
each algorithm uses its own labeling of the subgroups and,
therefore, a translation has to be made by each local al-
gorithm in order to compare its own result with the ones
that are communicated.

This type of exchange is more onerous than the one
involving structural information since it is proportional to
the number of instances in the data set. Furthermore, it
also generally requires more computations of each of the
local method.

Aside from the type of information exchanged between
experts, one question regards the directionality and the in-
tensity of the communication. For instance, suppose that
an expert appears very good according to a measure of
performance, and much more so than another one. Should
they exchange information in a symmetric way? The ques-
tion is at least worth considering, and is not settled. This
is also tied to the way performance is measured (see 4.3).

4.2. Diversity: what methods should be selected?
In most existing ensemble clustering methods, the whole

set of available base methods is used in order to obtain a
final result. This stems from the hypothesis that all meth-
ods are relevant to the task, at least to some (positive)
extent, and should therefore be useful. This, however, is
questionable.

It is obvious that if there is no variety in the ensemble
of methods, nothing can be gained through collaboration.
Diversity is thus a requirement. But to what extent?

If the experts must at least “speak the same language”,
e.g. use the same input space or the same set of data
points, do they have also to agree to a minimal level in
order to contribute constructively to each other task? This
is no simple question, and if there have been some works
aimed at exploring this issue, their findings are not quite
conclusive since many factors are at play to explain the
results. It is however tempting to hypothesize that in order
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to have the most fruitful collaboration, an intermediate
level of diversity between the experts should be struck.

In [42], the authors suggest a method in order to mea-
sure the diversity of local experts in an unsupervised task
by looking at how much more they agree on the specific
data set as compared to a randomized one. They then use
that measure in order to weight the contributions of the
experts.

We go back to this issue when discussing specific lines
of works (see Section 5).

4.3. Level of performance of each method. How to measure
it?

Measurement of performance in clustering is one of the
hardest question. Or, rather, this is a question with no
perfect, or best, answer. Intrinsically, clustering is an ex-
ploratory technique which aims at uncovering unsuspected
structures in the data. It is therefore questionable that a
definite optimization criterion can be defined a priori. It
will always be biased towards some kind of regularities. If
the underlying structure of the data does not obey this
prescription, clustering will miss it.

There is therefore no objective way of measuring the
absolute quality of a partitioning of data points. All ex-
isting classical evaluation criteria implicitly favor one type
of structure above others. If the measure used is “aligned”
with the type of structure that is looked for, then this a
lucky conjunction and it is legitimate to use this measure
as a performance gauge. Otherwise, the measure will be
misleading.

Let us suppose then that the chosen criterion is ade-
quate, and is shared by all participating algorithms. In
that case, using an ensemble approach can be a good idea.
Indeed, because clustering data points into subgroups in-
volves a gigantic search space and a hard to optimize func-
tion, all algorithms realize inexact approximations of the
ideal best partitioning. Mutualizing their strengths while
trying to factor out their weaknesses is therefore a tempt-
ing approach.

Suppose on the other hand that there is no ground to
prefer one evaluation criterion over other ones. Should one
then hope that by using several algorithms, each seeking
to optimize a different performance measure, one would
get a better clustering result? This is a recipe to define
a new performance criterion, but one difficult to charac-
terize. And, again, there is no reason to hope that this
criterion should be better adapted to the discovery of the
“right” type of structures. This however can help the algo-
rithms to escape local traps by submitting them to “alien”
hypotheses on the structures.

4.4. If there is a common goal: how to measure a “con-
sensus”?

In clustering aggregation, the goal is to reach, if possi-
ble, a better clustering of a data set using P clusterings.
The idea is generally to produce a single clustering that

agrees as much as possible with the P clusterings. The
notion of agreement, or, conversely, of disagreement, must
therefore be formalized in order to give rise to a measure-
ment.

Formally, the collaborative framework modifies the cri-
terion that each local algorithm Ai seeks to optimize in
order to discover an underlying structure (clustering) Ci

in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

{
f(Si) + g

(
agreement(Ai, {Aj (1≤j≤P, j 6=i)})

)}
where the term g

(
agreement(Ai, {Aj (1≤j≤P, j 6=i)})

)
pro-

vides a measure of the agreement between what has been
found by the local algorithm Ai and all other collaborat-
ing algorithms. It is important to note that the agreement
function generally does not take into account the original
descriptions of the data points, but only the partitions to
which they are allocated by the different clustering algo-
rithms. Therefore, agreement must be defined as a kind
of distance or similarity between assignments or between
high level descriptions of the clusterings.

Suppose several clustering algorithms wish to compare
their results on a common data set, how can this be done?
This depends on the learning task, wether it is consensus
clustering where the goal is to reach a common clustering
for the same data set, vertical clustering where the de-
scription space is the same, but not the examples, and one
still looks for a common shared characterization, or collab-
orative clustering where only local clusterings are looked
for, but still assuming that information from other local
clustering can help each local computation.

The following gives a flavor of the solutions proposed
for each of these three settings.

Consensus clustering. In consensus clustering, the goal is
to find one clustering for one data set based on several
input clusterings. The idea, in general, is to search for a
clustering G that is most similar, on average, to all the
input clusterings Ci(1 ≤ i ≤ P ).

One method for measuring similarity between cluster-
ings is to rely on the mutual information between the as-
signments of the data points to the clusters in the target
clustering G and the various input clusterings Ci. Thus,
for instance [23]) propose what they call the mutual infor-
mation (that is not in fact the proper mutual information
measure which is not symmetrical [32]):

I(G, Ci) =
K(G)∑
k=1

K(Ci)∑
l=1

p(G(k), C(l)
i ) log

(
p(G(k), C(l)

i )
p(G(k)) p(C(l)

i )

)
The goal is to find the optimal reference clustering

G with respect to this measure, which results in a diffi-
cult combinatorial optimization problem which has been
shown to be NP-complete. Heuristics exist that lead to ap-
proximate solutions, but guidance is necessary as to which
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heuristic to use depending on the characteristics of the
data sets and the number of clusters that are looked for.

An alternative strategy relies on an iterative procedure
where input clusterings are computed at successive time
steps, compared thanks to some consensus measure, and
iteratively modified until convergence to a unique cluster-
ing is obtained, or some stopping criterion is satisfied. This
obeys the schema of Figure 2, and is a form of collabora-
tive clustering where all experts work on the same data
set.

One solution to define the “similarity” between cluster-
ings is to rely on a consensus measure that compares the
partitions in which the data points are cast by each input
clustering. A perfect consensus is obtained when the par-
titions induced by the various clusterings match perfectly.

The archetypal approach for measuring consensus is
the so-called consensus matrix. This is a N ×N matrix of
which each element Mi,j stores, for each pair of examples
i and j, the proportion of clusterings in which the two
examples have been clustered together. Thus, for each
participating algorithm A`, we have what is called a con-
nectivity matrix:

M (`)(i, j) =
{

1 if examples i and j belong to the same cluster
0 otherwise

The consensus matrix can then be defined as:

M(i, j) = 1
P

P∑
`=1

M (`)(i, j)

where P is the number of algorithms.
Each entry of the consensus matrix is a real number

between 0 and 1, a perfect consensus matrix being one
with only entries that are 0 or 1.

Other techniques to define similarity between input
clusterings have been proposed, noticeably methods based
on graph structures (e.g., [43]).

Vertical clustering. If one looks for a common structure of
several different data sets, as is done in “vertical cluster-
ing”, it is no longer possible to make direct comparisons
at the level of the examples since they are different. Only
descriptions of the clusters found by each expert can be
exchanged, and a consensus measure must be defined at
this level. Very few works look at this framework. [44]
is a noteworthy exception. Here, the problem is to es-
timate Gaussian mixtures at different nodes of a sensor
network. The authors show how to adapt an Expectation-
Maximization procedure to tackle it. They formalize what
is assumed a priori to exist as commonalities between sup-
posedly independent nodes (i.e. a common underlying sig-
nal measured with different offsets at each node and the
same noise level) and what should be communicated be-
tween nodes (i.e., the estimated values of the mixtures
parameters).

Collaborative clustering. In collaborative clustering, one is
interested in the local clusterings attained by each local al-
gorithm on the local data sets. In this setting, the notion
of consensus becomes even more slippery than for verti-
cal clustering. It has to be defined to reflect the kind of
information that one would deem interesting to share be-
tween the local algorithms. It could be that the expected
number of clusters is very similar, or that the hierarchical
structure of the clustering is the same, or any other such
expectation that can be translated into constraints that
local clustering algorithms can send to each other and, in
return, take into account.

One instance of a consensus function with an associated
distributed clustering algorithm can be found in [45] in the
context of discovering clusters of pixels in satellite images.

4.5. How to control the collaboration?
As soon as a collection of “agents” is interacting in

pursuit of some task(s), several control strategies are pos-
sible. This is also true in the case of collaborative clus-
tering. The set of possibilities can be organized along the
following, strongly dependent, dimensions:

• Synchronous versus asynchronous operations. The
experts can be left functioning at their own pace and
exchanging information as leisurely or as rapidly as
they see fit. This asynchronous strategy is best when
each expert has its own goal and exchanges informa-
tion only insofar that it may help in the pursuit of
its local goal. When all experts are involved in a
single overall task, synchronicity is usually required
since the final result depends (equally) on all local
achievements. The choice is obviously heavily depen-
dent upon the type of process: iterative or one-shot.

• Iterative versus one-shot process. In one-shot pro-
cess, all experts compute their local solution, and
when this is done, and only then, a master algo-
rithm combines them and outputs the final solution.
Experts may well vary in the time they take to pro-
duce a solution, the master algorithm must wait until
the slowest one has contributed before starting the
combination process. Most techniques proposed for
consensus clustering use this type of control strategy
because there is only one clustering pass before the
combination process takes place.
When, by contrast, the computations performed by
each expert can take into account partial solutions
communicated by other experts, and is therefore it-
erative, synchronicity becomes an issue. Either, the
process is organized with a master clock: each ex-
pert must produce and communicate its temporary
solution before another clustering phase starts, or
the agents communicate freely, asynchronously, at
their own initiative. This later type of organization,
or lack thereof, can be encountered in collaborative
clustering, where each expert pursues its own local
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clustering task. However, most proposals use a syn-
chronous control strategy.

• Local versus global control. Local control goes gen-
erally hand in hand with an asynchronous control
strategy, while global control is linked to the need
for a master clock, and often also with the computa-
tion of a final combined overall solution.

One central concern with collaborative approaches is
the termination property. While it is required that a clus-
tering algorithm stops at somme point, even though the
solution reached might not correspond to a global opti-
mum of the, sometimes hidden, optimization criterion, it
might be difficult to ensure that all algorithms stop when
collaborating with other clustering algorithms in a itera-
tive way. Indeed, it is easy to imagine cycles where one
agent Ai produces some temporary solution Ci(t) at step
t that modifies the solution Cj(t+ 1) produced by another
agent Aj at time t+ 1, which in turn pushes Ai to change
its solution at time t+ 2 to Ci(t+ 2), only to influence Aj

to revert to its earlier solution Cijt) at time t+ 3, and so
on.

In the same way that convergence is an issue in multi-
agent systems, it is a central question in iterative collabo-
rative clustering. One general method is to define an “en-
ergy function” that is guaranteed to decrease with each
iteration. This is, for instance, the approach taken in [45].

5. Related work

Collaborative learning denotes distributed algorithms
that influence each other during their own computations
by exchanging information. We already underlined the
pioneering works of Oliver Selfridge on the Pandemonium
in 1958 [46, 41] and the highly sophisticated Hearsay II
system developed for speech understanding in the 1970s
[38]. The co-learning framework developed for supervised
classification from partial and disjoint views [47] has also a
special place in the history of collaborative learning since
it was based on a formal analysis leading to the definition
of the algorithm.

Regarding unsupervised learning, algorithms for co-
clustering or bi-clustering, initialized by [48], can be con-
sidered as forerunners of what was not yet called collabora-
tive clustering. Co-clustering is indeed a limit case where
the algorithm can be seen as an organized interplay be-
tween two agents exchanging information about the same
data set, each agent seeing only one dimension (e.g. ob-
jects or attributes values) and trying to find clusters along
this dimension taking into account what is found by the
other agent. More recent work on co-clustering, which is
not in the scope of this paper, can be found in [49, 50, 51].

However, this was not before the very end of the 1990s
that collaborative approaches emerged as a concept in its
own right worthy of interest (e.g. [52]). Many methods

have been investigated from various perspectives: collabo-
rative frameworks based on fuzzy clustering or topological
maps, higher-level collaborative schemes relying on exist-
ing clustering algorithms or collaborative approaches ded-
icated to distributed datasets.

5.1. Implementations
5.1.1. Fuzzy collaborative clustering

A fuzzy collaborative clustering architecture is intro-
duced by [53], in which several subsets of patterns can be
processed together to find a common structure to all of
them. In this system, different subsets of the initial data
are processed independently. Then, each partition matrix
is modified according to the other matrices found: each
result produced on a subset is modified according to re-
sults found on the other subsets. Extensive experiments
of the method are also proposed in [54] along with algo-
rithmic details. An application of this collaborative fuzzy
clustering method to semantic web content analysis has
been proposed in [55]. The authors discuss a collabora-
tive proximity-based fuzzy clustering and show how this
type of clustering is used to discover a structure of web
information in the spaces of semantics and data.

Another fuzzy collaborative framework is proposed by
[56], where rough sets are used in a collaborative paradigm
in which several subsets of patterns are processed together
to find a common structure. A clustering algorithm is de-
veloped by integrating the advantages of both fuzzy sets
and rough sets. A quantitative analysis of the experimen-
tal results is also provided for synthetic and real-world
data. To tackle the problem of distributed data, [57] pro-
posed a framework to cluster distributed classifiers. They
show that clustering distributed classifiers as a preprocess-
ing step for classifier combination enhances the achieved
performance of the ensemble.

5.1.2. Topological and topographic maps
In a recent work [58], the authors present a formalism

based on topological collaborative clustering using prototype-
based clustering techniques. Topological maps represent-
ing different sites collaborate without having to access the
original data, thus preserving their privacy. Two different
approaches of collaborative clustering are given: horizon-
tal and vertical collaboration. The strength of collabora-
tion (exchange of confidence levels) between each pair of
datasets is determined by a parameter, called coefficient of
collaboration, to be estimated iteratively during the col-
laboration phase using a gradient-based optimization. The
method comprises two steps. In the first one, the Som
(Self-Organizing Map) algorithm [59] is applied to each
dataset independently. In the second one, the collabora-
tion phase takes place to enrich the information contained
in the different topological maps produced during the first
step.

In [31], another collaborative clustering approach based
on topographic maps is proposed. The idea is to combine
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the Variational Bayesian Generative Topographic Map-
ping (VBGTM) and Fuzzy c-means (FCM). VBGTM was
introduced as a variational approximation of Generative
Topographic Mapping (GTM) to control data overfitting,
but when the number of latent points is large, similar units
need to be clustered to facilitate quantitative analysis of
the map and the data. FCM is used to determine the
prototypes as well as the clusters and the corresponding
membership functions of the input data, based on the la-
tent variables obtained from VBGTM.

5.1.3. Collaboration of existing clustering methods
Besides the development of any sort of specific collab-

orative methods, general frameworks describing how clus-
tering methods can work together have been proposed.

For example, [60] presented a new architecture for col-
laboration, in order to help a set of clustering algorithms
to reach an agreement on the partitioning of a common
dataset. In this setting, the collaboration aims at making
the methods agree on the partitioning through a refine-
ment of their results.

Another collaborative framework is given in [61], which
goal is to solve multi-view and alternative clustering prob-
lems. Ensemble clustering and semi-supervised cluster-
ing principles are used to control different clustering al-
gorithms by sharing a common model. The aim of the
method is to reach a consensus or alternatively to improve
local clustering solutions.

A similar approach has been proposed by [21]. The
authors defined a new cooperative clustering model which
involves cooperation among multiple clustering techniques
to increase the homogeneity of objects within the clusters.
The model is capable of handling datasets with different
properties by developing two data structures: a histogram
representation of the pair-wise similarities and a coopera-
tive contingency graph. The two data structures are de-
signed to find the matching sub-clusters between different
clusterings and to obtain the final set of clusters through
a coherent merging process.

More recently, [45] proposed a new collaborative frame-
work that works with most clustering algorithms. The
collaboration scheme used is horizontal collaboration (see
Section 2). All algorithms work either on subsets repre-
senting the same data in different feature spaces, or on
the exact same data searching for a different number of
clusters, or a mix of both.

5.1.4. Distributed data
Due to the recent growth of data automatically gath-

ered, there is a growing need of efficient methods dealing
with distributed data.

[62] defined a collaborative clustering approach that
focuses on distributed or ubiquitous knowledge discovery,
when only the access to the local dataset is available. The
authors present two different versions of the method, one
where the data are the same but described by different
features, and one where the features are the same, but the

objects of each local dataset are different. The approach
consists in two step. First a collaborative fuzzy clustering
step and then a particle swarm optimization to optimize
the collaboration.

More recently, [63] proposed a new efficient way to deal
with large distributed datasets. The method is based on a
collaborative divide-and-conquer algorithm using k-means
as base clustering algorithm. The collaboration consists in
the exchange of seeds between the clustering methods to
accelerate the convergence in each partition.

5.2. Dimensions of Collaborative Methods for Clustering
To sum up, several dimensions can be useful to char-

acterize the tasks and methods of collaborative clustering:
1. single objective vs. multiobjective clustering;
2. global clustering vs. local clusterings;
3. single domain clustering vs. multi-domain cluster-

ing;
4. clustering of single scale data vs. multiscale data;
5. single strategy vs. multi-strategy approaches;
6. exchange of information on the membership of the

samples to cluster vs. exchange of information on
the clustering models.

Table 1 proposes a classification of the main methods
presented in this paper according to these characteristics.

5.2.1. Single objective vs. multiobjective clustering
The notion of objective relates to the criterion or crite-

ria to optimize.
It may be convenient to define a single expression as

a combination (or compromise) between several targets to
maximize. For example, it is common in clustering to seek
to maximize both clusters compactness (intra-cluster simi-
larity) and difference (inter-cluster dissimilarity). This can
be expressed by a criterion: compacity(C)+λ.dissimilarity(C),
where C is a clustering and λ a parameter to control the
relative importance of the two targets. In this case, we
talk about single objective clustering.

By contrast, the goal of multiobjective clustering is to
find clusters in a data set by applying several clustering
algorithms corresponding to different objective functions
(or criteria). A final clustering corresponding to a trade-off
between the base criteria can eventually be derived using
a Pareto front.

5.2.2. Global clustering vs. local clusterings
The goal of the collaboration can either be to produce a

unique partition of the whole dataset: global clustering, or
it may be to find partitions of subsets of the data, whether
they are described by the same attributes or not: local
clustering.

In the case of a global clustering, the final partition
results from a consensus between the solutions produced
by the different methods. This consensus function can
rely directly on the partitions of the data set produced by
the methods, or may take into account the (parametric)
models produced by these methods.
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5.2.3. Single domain clustering vs. multi-domain cluster-
ing

In the single-domain case, all objects belong to the
same super-class of objects (for example, furniture or liv-
ing beings). In the multi-domain case, the objects catego-
rized by the various local methods may belong to different
superclasses (for instance, it could be interesting to see
in which way and to what extent insects in a colony and
citizens in an economic system share criteria or model pa-
rameters).

5.2.4. Clustering of single scale data vs. multiscale data
In some other cases, the data correspond to the same

items, but are described at different scales. This is espe-
cially the case for remote sensing images for example, but
it can also involve objects described at different levels of
abstraction.

In all these cases, it may be beneficial to have clus-
tering tools operating at different levels of description to
collaborate in order to produce a more informed view of
the data.

5.2.5. Single strategy vs. multi-strategy approaches
In a single strategy approach, all collaborating methods

are based on the same algorithm, but working on different
data or having different parameter values. Exchange of
information between these methods is easy because they
share the same settings.

It is harder to benefit from the collaboration of different
methods, like, for example, a k-means algorithm and a
hierarchical clustering algorithm, because of the lack of
direct correspondence between solutions. The same kind
of problem arises in multi-objective clustering.

5.2.6. Exchange of information on the membership of the
samples to cluster vs. exchange of information on
the clustering models

One way to address the issue of exchanging informa-
tion between algorithms that differ in their functioning is
to communicate at the level of the membership of each
data point to the clusters in each local solution. This
does not require that the algorithms share any information
about their internal state. However, exchanging informa-
tion about these internal states can enrich communication
and speed up the collaborative process. For instance, al-
gorithms based on mixture of probabilities distributions
could find useful to exchange information about the shapes
of these distributions.

5.3. Applications
Most of the work presented in this section have been

compared in the literature on the classical UCI datasets.
One reason for this choice was the high execution cost of
many of these algorithms, making them hard to execute
on large datasets. However, some were used on real data
to solve concrete problems.
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[53] single global memberships
[57] single local � � models
[58] single local � models
[31] multi local � models
[60] single global � memberships
[61] multi local � � � models
[21] single global memberships
[45] single global � memberships
[62] single local � � models
[63] single global � memberships

Table 1: Classification of the presented collaborative methods, ac-
cording to the six main characteristics described in Section 5.2.

For example, [64] developed a 3-D motion segmentation
method, based on collaborative clustering. The segmenta-
tion is computed from two perspective views. A multi-view
extension of the Sparse Subspace Clustering [65] algorithm
is proposed to combine the information across multiple im-
age frames.

In [66] a study was published on the topic of market-
ing research. The authors used a multi-objective parti-
cle swarm optimization (MOPSO) within a collaborative
fuzzy clustering framework. The main contributions of
this work consist, first, in giving a method to compute the
collaboration matrix between the different data reposito-
ries, and second, in proposing a using fitness functions at
both levels (data and information levels), that allow one
to build a consensus between all the data sites.

In [67], the authors presented an application of their
collaborative clustering approach to remote sensing image
classification. This multi-strategic method integrates dif-
ferent kinds of clustering algorithms that collaborate to
produce a unique consensual result. The paper highlights
how clustering methods can collaborate and presents re-
sults in the paradigm of object-oriented classification of a
very high resolution remotely sensed images of an urban
area.

6. Conclusion and Perspectives

Despite the increasing number of methods and tools
dedicated to unsupervised collaborative classification, this
paradigm is still surprisingly infrequently used. However,
the emergence of the Big Data area, with all its demand
for distributed but collaborative computations should rad-
ically change this situation. Moreover, while, until re-
cently, “ensemble methods” were mostly aimed at super-
vised learning, a shift of attention towards unsupervised
learning is taking place. This is due in part to the press-
ing need for methods that allow one to explore large data
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sets without well-defined preconceptions, and without pre-
existing categories that can be used as labels in training
instances.

In this paper, we have underlined the differences be-
tween approaches that aim at combining clusterings: multi-
view clustering, cooperative or consensus clustering, and
collaborative clustering. In the latter, the local algorithms
usually process different data sets, either because the in-
stances or the descriptors, or both, differ. In addition,
and this is essential, these algorithms seek to find struc-
tures in the data that may differ from the structures found
by other algorithms. However, they are ready to use in-
formation coming from the other algorithms in order to
discover better structures than if they were operating in
isolation. Another key feature of the collaborative cluster-
ing framework is that the local algorithms may exchange
information among themselves iteratively, and not in pre-
lude of a final consensus making phase.

Still, for all the surge of interest on collaborative clus-
tering, there remain many venues to explore and numerous
questions to settle. In this paper, we have tried to expound
a systematic set of characteristics that can be used in or-
der to describe algorithms, and above all to devise new
schemes. But above all, we have underlined a set of is-
sues and questions that any method must face: the type
of information that is exchanged, the protocol controlling
the communications, the way that differences are resolved
at each node, the stopping criteria, to name the foremost
ones.

Even though there now exists a panoply of methods
and of successful experiments, we are still lacking a the-
oretical understanding about the conditions for positive
collaboration in clustering tasks. All situations cannot be
conducive to fruitful collaboration. But in which ways the
local tasks should be related for a fruitful collaboration
to be possible? To what extent the local clustering algo-
rithm should share their a priori on the interesting data
structures? What information should they exchange? And
among which set of collaborators? Is there a way to detect
negative collaborations? Finally, in a distributed and col-
laborative framework, how to define a stopping criterion?
All these questions are still largely open.

This survey paper has tried to organize and convey the
main issues facing the development of collaborative clus-
tering methods. This is an exciting and promising field
that arrives on time for solving knowledge discovery prob-
lems in the big data area. We believe that the time is
ripe for largely extending the use of these methods. All
the while, this is also a domain rich with questions that
go beyond the current statistical learning theory, and that
should stimulate very interesting new research efforts.
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