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Assessment of capability of deep learning to
predict air pollution dispersion from fluid
mechanics

Xavier Jurado, Nicolas Reiminger, Marouane Benmoussa, José Vazquez, and Cédric Wemmert

Abstract—Air quality is a major health issue for densified cities nowadays. To evaluate and act upon it, modeling alongside sensors has
proved to be a powerful tool. Among the different available models, Computational Fluid Dynamics (CFD) has proved to be formidable
to evaluate airborne pollutant dispersion locally in urban areas since it is able to consider buildings and others complexes phenomenon
at the scale of the meter. Nevertheless, this method has a major drawback, it is computationally expensive and cannot be applied in
real time or over large areas. To overcome this issue, several state-of-the-art deep learning methods to treat spatial information have
been trained based on CFD results to predict airborne pollutant dispersion. Among these models, multiResUnet architecture was
proved to be the best on overall over seven metrics. It managed to have two out of three air quality metrics within acceptable range for
a good air quality model. These results are obtained in a mere matter of minutes against several tenth of hours for CFD.

Index Terms—Deep Learning, Convolutional Neural Network, Computational Fluid Dynamics, Air quality

1 INTRODUCTION

TMOSPHERIC pollution represents millions of deaths
A each year and is one of the major health issues accord-
ing to the World Health Organisation (WHO) since 91% of
people lives in areas exceeding the WHO threshold stan-
dards [1]. Indeed, airborne pollution can cause several mor-
tal diseases [2], [3]. It is also detrimental to the environment,
causing acid rains [4] or impacting agricultural yield [5]]. To
tackle this issue, regulation has been implemented in Europe
through the European Directive in 2008 [6]]. The regulation
is based on annual average as well as hourly concentrations
that should not be exceeded. To ensure that these standards
are respected and to protect health of residents, several tools
exist to assess the pollution in an area. These tools can span
continents [7] to urban neighborhoods. For local pollution
at the scale of the neighborhood, one can either use sensors
[8], but they are expensive and only provide very local infor-
mation, or numerical models based on physical phenomena
[9]. A popular approach for local pollution assessment is to
simulate its dispersion with Computational Fluid Dynamics
(CFD), but this requires a lot of computing resources [10]. It
is therefore adapted to compute mean annual average but
is not ideal for large areas or use in real time. On the other
hand, to cover large areas in real time, some models like
plume exist. Unfortunately, they are based on hypothesis
that make them unsuited for urban areas where the air
pollution is the most stringent [11].

The recent advances in machine learning and deep learn-
ing may provide the answer to these limitations. Indeed,
it has much progressed over the recent years especially
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thanks to the improvement and democratisation of highly
threaded parallel computing processors [12]]. Recently, it has
proved to outperform previous state of the art methods
in various fields such as speech recognition, visual object
recognition, object detection and many other domains such
as drug discovery or genomics [13]. These new methods
have not gone unnoticed in the domain of physics and
numerical simulation. Their use are still nascent in these
domains. For example, deep learning models were trained
to perform numerical simulation to accelerate them as in
[14]-[16]. Deep learning has also been used in the domain
of air quality to estimate the pollution based on pictures
[17], sensors [18]], to extract the main features explaining the
pollution variation [19] or urban systems [20].

To build a fast and accurate system able to predict air
pollution in real time based on wind, traffic and buildings
geometry, we tried to use a convolutional network (CNN),
that has proven to be able to treat spatial information
successfully, to learn pollutant dispersion from CFD. This
will overcome the issue of speed related to standard CFD
computation while proposing a model that is more appro-
priate to urban areas. In this paper, 6 CNN models (namely
UNet, SegNet, linkNet, MultiResUnet, PSPNet and FCN)
are trained and tested, based on 5000 CFD examples. The
aim of the paper is to verify the capability of such models
to determine pollutant dispersion rapidly and accurately,
and which of these well known CNN architecture performs
better to solve this problem.

2 MATERIAL AND METHODS
2.1 Physical numerical model

To learn pollutant dispersion in open urban areas, deep
learning architectures need examples to be trained. To sim-
ulate wind and underlying pollutant dispersion, a popular
technique is to use CFD as in [9]], [21], [22]. To perform
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simulations, Openfoam 5.0 was used. OpenFoanﬂis an open
source software dedicated to numerical simulations, ranging
from financial to radiation to fluids mechanics. Hypothesis
for the simulation were the following:

— Reynolds Averaged Navier Stokes (RANS) approach
was used;

- unsteady simulations were performed;

— the turbulence model for the RANS model is k-
epsilon renormalization group (RNG) proposed by
[23];

— atransport equation for the pollutant dispersion;

— upper and lateral boundaries are symmetry condi-
tions;

— the outlet is a freestream condition;

— buildings have no slip conditions;

— the atmosphere is considered neutral, therefore using
a logarithmic inlet profile and turbulence for k and
epsilon parameter calculated as proposed in [24]:
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where, U is the inlet speed [m.s~!], ¢ is the turbu-
lent dissipation rate [kg.m~1.574], k is the turbulent
kinetic energy [kg.m™1.s73], u, is the shear velocity
[m/s], kg_ is the von Karman constant, zg is the
roughness length [m] and z is the altitude [m].

Guidelines provided by [25] were respected when con-
structing the domain and the meshes of every simulation.
For each simulation, the top of the domain is situated at a
minimum distance of 5 x H from highest building and the
lateral, inlet and outlet boundaries at a minimum distance
of 5 x H from the closest building, with H the height of the
tallest building in the domain. A mesh sensitivity analysis
was made and a mesh with 0.5m for the cell closest to the
building were found to be enough to be insensitive. An
example of a neighborhood of the meshing is shown on
Figure 1}

More details on the model, equations and validation,
please refer to [26] where the same approach has been
described and properly validated.

The approach, model and meshes described above have
been found to be able to reach an error which is less than
10% compared to experimental measures as show in [26]
and a similar approach have been proven to have an overall
error of about 30% compared to a real in situ situation in
urban areas [27]. The numerical results will be considered
as the ground truth for the deep learning algorithms.

For the sake of simplicity the wind will always come
down from the y axis. Around 5, 000 examples of couples of
building layouts and pollutant sources have been computed
to be used for the deep learning training and validation.

1. https:/ /www.openfoam.org/

Fig. 1: Example of the meshing on a building layout used to
create the examples

2.2 Deep learning architectures

Deep learning architectures have shown to be very effective
to tackle spatial information, for example to predict urban
traffic [28], [29] or to predict citywide passenger demands
[30]. Furthermore, convolutional ones have shown to be
very effective. Indeed, for semantic segmentation, CNNs
have proven to be able to overcome issues that were not
achievable before in a lot of different fields. For example,
it has been used in the medical field to identify certain cell
types as in [31], in face recognition as in [32], or remote
sensing images analysis [33].

The strength of CNNs to treat spatial information have
also started to be used to predict physical phenomena as
in [15] and [16]. To simulate physical phenomena, such as
fluid mechanics, it is common to define a set of fundamental
equations describing the phenomena and then, if needed, to
implement a numerical code that will solve them step by
step, until reaching convergence (or pseudo convergence)
or during the transient wanted time. These steps generally
require vast computing time resources.

Deep learning has already been used in fluid mechanics,
especially to determine the speed vector field [15], [16].
Here, we have the ambition to go further and study the abil-
ity of such architectures to build a model able to determine
pollution dispersion given buildings” geometry, wind and
traffic information. For that, CNN'’s architectures designed
for image segmentation tasks will be compared. The first ar-
chitectures used are encoder-decoder, with, chronologically,
Unet [31], SegNet [34], linkNet [35] and multiResUnet [36].
They follow the same principle of encoding the information
to get the context and then decoding it to get the precise
location of the wanted feature. However they have small
variants on the way they handle spatial information through
the layers. A multi scale representation method with PSPNet
[37] will also be used. And finally, a classical full convolu-
tional network (FCN) [38].

The models can have different number of free parame-
ters depending on the number of layers and filters at each
layer. To test different numbers of trainable parameters, the
architectures will be tested with several filter per level. Each
of this architectures have a level in which the number of
filter is minimal as it can seen on2noted “F”. This min filter
will be used to describe the variation of free parameters in
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the models.
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Fig. 2: Architecture of the multiResUnet
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The computation from the physical model are turned into
2D maps of 150 x 150m? at a height of 1.5m. Two maps will
be used as input, the first map representing the height of
the buildings and the second second map the distance from
the pollutant source. The last map, will be the normalised
pollutant dispersion field. An example of the images used
the architectures are shown below:

Input and output data for the deep learning models

(@) Buildings

(b) Pollution source (c) CFD result

Fig. 3: Images given as input to the network (a) the height,
shape and position of each building in the area, (b) the dis-
tance from the pollution source, and (c) the corresponding
CFD simulation, considered as the right output for the CNN.

In this study, 4,919 examples were produced, divided
with 3, 687 for training, 410 for validation and 822 divided
into 28 subsets for testing according to the methodology
provided by [39]. The training was performed for 25 epochs
with a batch size of 6. The optimizer used is Adam. A
callback patience of 5 epochs was used on the validation
data loss.

2.4 Deep learning loss

For every model, three losses are tested. Two well known
losses, binary crossentropy (bce) and mean squared error
(mse) as defined in Equations [#and
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A custom loss, called J3ploss, was also tested (see Eq. @
It is based on the Jaccard index, originally called community
coefficient, that aims at comparing the intersection with
the union of two binary set. This index is often used in
segmentation to compare the predicted binary mask to a
ground truth segmentation mask. But here, the pollutant
concentration is a continuous value, so areas can not be
compared as in segmentation. However, the continuous
value can be considered as a third dimension and so the
intersection over the union is not computed between two
surfaces but two volumes. The loss is computed between
two pairs of images as following:
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where V,.cq and Vi, are the respective volume of the
two images with the pixel value as the thir dimension
respectively for the predicted and ground truth image, N
is the number of pixels, yi{"“° is the value of the i'" pixel of
the true image and yi!"“® is the value of the i*" pixel in the
predicted image.

Models Min filters Losses

FCN 1-2-4-8 J3p - bce - mse
PSPNet 8-16 Jsp - bce - mse
linkNet 8-16-32 J3p - bce - mse
SegNet 8-16-32 J3p - bce - mse
multiResUnet 8-16-32 J3p - bce - mse
Unet 8-16-32 J3p - bce - mse

TABLE 1: Summary of the different variants of each model
tested in this study

2.5 Evaluation of the results
2.5.1 Popular metrics in the air quality field

To evaluate the predictions made by the deep learning archi-
tectures, several metrics will be used. Indeed, each measures
different aspects of the model and helps to see strength
and weaknesses better than reducing the analysis on one
single metric. In the air quality field, the study of Chang
et al. [40] provides several metrics to be used to evaluate
and conclude on the quality of a model. Six metrics are
provided, but some are equivalent and evaluate the same
aspect of the result. Thus, we keep only four of them for the
presented study. Fractional Bias (F'B) measures if the pre-
diction mean is globally the same as the ground truth mean
value. Normalised Mean Squared Error (/N M S E) measures
if there are extreme differences between the prediction and
the ground truth. The fraction of predictions within a factor
of two of observations (F'AC2) enables to measure that
on overall, the predictions are within an accepting error
margin. And finally, R index, that compares the correlation
between the two datasets (ground truth and predictions).
FBand NMSE are to be minimized at 0, FAC?2 and R are
to be maximized at 1.
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with Cpreq the predicted concentration field and C,.; the
reference concentration field (ground truth).

In [40], the authors propose ranges of values on the
above parameters to assess if an air quality model is sat-
isfying. They also underline that for spatial models, these
values are harder to reach. The proposed values are:

- FAC2>05,
- NSME < 15,
- |FB| <03.

2.5.2 Metrics related to images

On the above metrics, three more that are commonly used
to compare images will be estimated. The relative mean
absolute error (M AE,¢;), J3p that is also used as a loss and
described previously, and the Structural Similarity Index
(SSIM) designed to measure the visual quality between
a compressed image and the original one. M AE,.; is to be
minimized. SSIM and Jsp are to be maximized.

MAE,,; = 1Cret — Cored 11)
Cpred
JSD ~ mln(crefa Cpred) (12)
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with Cpeq the model prediction concentration and C.. 5 the
reference concentration (ground truth).
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where 114 and pp are the respective average of A and B, 0%
and J% are the respective variances of A and B, 045 is the
covariance of A and B, L is the dynamic range of the pixel
values and k; and k; are two constants respectively 0.01 and
0.03 (by default).

3 RESULTS

To compare the architectures, the methodology provided
in [39] will be used. This methodology allows to compare
different models by ranking them on their performance on
a metric over several datasets. This ranking can then be
used to make a critical difference diagrams. To compare the
models, the test dataset composed of 822 examples divided
into 28 subdatasets will be used. A subdataset correspond
to an emission source (road) with a building outlet.

3.1 Loss functions and filters

Three loss functions were tested along several number of
filters for each 6 model. The difference between predic-
tions and ground truth was evaluated according the 7 met-
rics presented above. Nevertheless, as this would produce
7 x 6 = 49 diagrams, to sum up the result, the 7 metrics
of each variant were concatenated together for each model
to determine the best performing variant for each model.
Thus, the 6 models diagrams are presented on the critical
difference diagrams in Figure 4| Notations on the diagram
for the model are “loss”_"min filters”, for example a model
that uses binary crossentropy and 4 min filters will be noted
"bce_4".
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Fig. 4: Ranking of the different variants for each model using
all the metrics

As it can be seen on Figure[d} the J3p loss always comes
first for every model.

3.2 Architectures

Using the best variant of each model as determined in
the previous subsection. The same approach of the critical
difference diagram will be used to determine which model
performs best. The results for all the metrics with all the best
variant of each model is presented on the Figure



metric FAC2 NMSE FB R MAErel J3D ssim
mean value 0.8 37 0.3 0.8 0.7 0.5 0.8
expected value ~>05 =<15 =<03 1 0 1 1

TABLE 2: Evaluation of the results of the multiResUnet on each metric
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Fig. 6: Examples of predictions from the multiResUnet

The architecture that manages to predict best pollutant
dispersion on overall is multiResUnet which is first 5/7

times and always at least in the first statistically indistin-
guishable group. When all metrics are considered together,
multiResUnet becomes first. The absolute results on all met-
rics for multiResUnet using 8 min filters and J3;p are given
in Table [2| It can be seen that multiResUnet using the J3p
loss managed to perform within the standard performance
of a good model for 2 out of 3 metrics widely used in air

quality.

Examples of the multiResUnet predictions against the
CFD model for the centile 5 %, the median and the centile

4 CONCLUSION

Several architectures that have proved their efficiency in
other field have been applied to pollutant dispersion mod-
eling. For each of these architectures, several variants with
different amount of minimal filters were trained using three
different losses. For each model, the variants were compared
against several metrics and it was found that Js3p loss
gave the best results for every model to predict airborne
pollutant dispersion. The architectures were then compared



one against the others and it was found that multiResUnet
had the overall best results. Using metrics wildly accepted
in the air quality field, 2 out of the 3 metrics are in the
accepted range for a good air quality model when compared
to the ground truth. The architecture was able to obtain
these results in minutes compared to the computation that
requires tenths of hours. These results are promising to
enable real time pollutant dispersion in urban cities with
CFD accuracy.
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