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ABSTRACT
Recently, Artificial Intelligence namely Deep Learning methods have revolutionized a wide
range of domains and applications. Besides, Digital Pathology has so far played a major role
in the diagnosis and the prognosis of tumors. However, the characteristics of the Whole Slide
Images namely the gigapixel size, high resolution and the shortage of richly labeled samples
have hindered the efficiency of classical Machine Learning methods. That goes without saying
that traditional methods are poor in generalization to different tasks and data contents. Regard-
ing the success of Deep learning when dealing with Large Scale applications, we have resorted
to the use of such models for histopathological image segmentation tasks. First, we review
and compare the classical UNET and ATT-UNET models for colon cancer WSI segmentation
in a sparsely annotated data scenario. Then, we introduce novel enhanced models of the ATT-
UNET where different schemes are proposed for the skip connections and spatial attention gates
positions in the network. In fact, spatial attention gates assist the training process and enable
the model to avoid irrelevant feature learning. Alternating the presence of such modules namely
in our ALTER-ATTUNET model adds robustness and ensures better image segmentation results.
In order to cope with the lack of richly annotated data in our AICOLO colon cancer dataset,
we suggest the use of a multi-step training strategy that also deals with the WSI sparse annota-
tions and unbalanced class issues. All proposed methods outperform state-of-the-art approaches
but ALTER-ATTUNET generates the best compromise between accurate results and light net-
work. The model achieves 95.88% accuracy with our sparse AICOLO colon cancer datasets.
Finally, to evaluate and validate our proposed architectures we resort to publicly available WSI
data: the NCT-CRC-HE-100K, the CRC-5000 and the WARWICK colon cancer histopatholog-
ical dataset. Respective accuracies of 99.65%, 99.73% and 79.03% were reached. A comparison
with state-of-art approaches is established to view and compare the key solutions for histopatho-
logical image segmentation.

1. Introduction
Image segmentation is a key task of image processing. Over the last few years, its approaches have tremendously

evolved and have become a hotspot in the research field. The main purpose of such task is to group similar regions
of the image and assign their respective class labels. In fact, image segmentation combines both localization and
classification steps. Its applications cover a wide range of domains like computer vision [1], remote sensing [2],
medical imaging [3], etc. Actually, the emergence of different medical imaging tools has catalyzed the efforts to
enhance the image processing techniques [4]. Medical image segmentation is a crucial step for many other related
tasks namely pathology diagnosis, surgical planning and mass detection. Traditionally, the segmentation process relied
on the pathologists experience to extract the aimed information such as organs, tissues and nuclei [5]. However, such
procedure is both time and effort consuming. Medical images also introduce a high level of complexity compared
with natural scene images and other computer vision data. Most of the medical images include many components
with high visual resemblance and confusing boundaries [6]. As a matter of fact, the emergence of the digital Whole
Slide Images (WSI) has introduced new challenges for image segmentation. Histopathological images are usually
gigapixel slides with complex clinical features. They often suffer from a lack of richly annotated reference data for
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accurate segmentation tasks. Thanks to the advances in Artificial Intelligence (AI) and computational resources, the
segmentation of these gigantic slides is possible and serves as a key tool for pathological diagnosis, prognosis, and
therapeutic response prediction [7, 8].

Despite the promising potential of Deep Learning (DL) tools, the segmentation of WSIs is still a challenging
task. Novel approaches need to cope with the particular traits of histopathological data and ensure accurate tissue
segmentation [9].

This paper shines the light on the segmentation of histopathological images. First, a review of the role of AI in
WSI image segmentation is presented along with the challenges that hinder its success. Then, a colon cancer WSI
segmentation is executed in a weakly supervised scenario. Therefore, UNET model [10] is presented and evaluated on
the AICOLO dataset. ATT-UNET [11] is also used for the same task. Novel enhanced versions of the ATT-UNET are
introduced for segmentation of colon cancer histopathological images. The proposed models are compared with state-
of-the-art semantic segmentation models namely FCN8S, FCN16S, FCN32S and DEEPLABV3+. Moreover, evalu-
ation of the models is performed with different public datasets (CRC-5000 , NCT-CRC-HE-100K and WARWICK).
Finally, the proposed approaches are assessed as regards to state of the art methods in colon cancer digital pathology
tasks. The main contributions of the paper are:

• The establishment of a novel multi-step training strategy. This approach enables the model to deal with the
lack of richly labeled samples, the sparse annotation of the images and the unbalanced class representation in
histopathological data.

• The use of the ATT-UNET model for colon cancer histopathological image segmentation.
• The introduction of novel ATT-UNET inspired models for better feature learning. The proposed models are

low-cost and ensure the focus on the relevant information in the histopathological data.

2. Artificial Intelligence for Medical Image segmentation
2.1. The challenges

The use of AI for histopathological image segmentation is disrupted by many challenges as detailed in [12] namely:
Insufficiency of annotated samples: Most of the DL models in a digital pathology context require an important
amount of good quality, curated and representative training images. Therefore, pathologists need to thoroughly label
theWSI and highlight the Regions Of Interest (ROI) based on the targeted application. However, such task is very time
consuming and requires a huge share of involvement especially when dealing with large images acquired at different
resolutions and staining techniques. Consequently, WSI datasets are often lacking of annotated samples and balanced
classes representation. Actually, most the current WSI processing tasks use private data [13]. Therefore, the trained
DL architectures are suffering from limited practicality and restrained utility in different applications.
Color Variation and Artifacts: Histopathological images are a result of a multi-task workflow with many interferes
from different fields. Therefore, many undesirable effects may appear at each step of the process. For example, bending
and wrinkling of the tissue may generate blurry unsolvable regions. Moreover, color variation could occur during the
staining process as a result for the different manufacturers of staining reagents and scanners, thickness and tearing in
tissues and every lab staining conditions. The presence of such artifacts in the WSI can mislead the feature learning
process and hinder accurate tissue segmentation. In order to cope with such issue, most of the previously proposed
approaches apply prior processing or augmentation to the histopathological slides [14, 15].
2.2. Related work

The approaches of WSI segmentation has evolved from hand-crafted to semi-automatic models and recently to
the fully automatic segmentation as depicted in [16]. A variety of graph-based methods were developed to segment
and highlight targeted tissues in WSI namely as suggested in [17]. However, these methods are highly dependent
from a predefined set of features. Thus, their generalization to different applications and datasets is very restricted
as detailed in [18]. Therefore, the interest was deflected toward DL models regarding their efficiency in automatic
feature extraction. Different methods combined graph-based approaches and DL as detailed in [19]. One of the main
trials to use Fully Convolutional networks (FCN) for WSI semantic segmentation was evoked by Long et al. in [20].
The proposed model is trained via end-to-end back-propagation to generate a pixel-wise segmentation map. A deep
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contour-aware network (DCAN) was introduced in [21] based on a multi level FCN for colorectal WSI segmentation.
Authors in [22] also introduce a FCN-8s model that combines multi-level localization and feature information for
inflammatory colon disease detection in bowel biopsies. Later on, different variants of the FCN were suggested as
detailed in [23, 24, 25]. In fact, the use of FCN models for histopathological image segmentation has also been used
as a key step for different applications. For instance, the FCN network with a VGG-16 backbone as presented in
[26], has inspired authors in [27] and [28] for respective Ovarian cancer bio-markers identification and Thyroid cancer
diagnosis. The VGG-16 based FCN was also used to execute foreground segmentation in [29]. The model is combined
with an edge detection CNN formulti-channel image segmentation. In fact, a great share of the histopathological image
segmentation literature is dedicated to Convolutional neural Networks (CNN) as they ensure accurate feature learning
with low computational complexity. The authors in [30] combined the outputs of different CNN models in order to
generate a gland segmentation map for the Histology Images Challenge Contest (GlaS) histopathological data [31].
In the same context, Xu et al introduce a mutli-CNN framework for complex multichannel information, location,
and boundary cues fusion. Different CNN architectures were deployed in the context of colorectal cancer namely the
VGG-19 [32], 5-layer CNN [33] and a CNN-LSTM dual model [34]. LeNet-5 architecture is also used for the same
context in [35]. A hybrid approach was introduced by Qaiser et al. in [36] where they combine both CNN extracted
features and mathematical feature representations of the training data for accurate segmentation of colon cancer.

These approaches ensure reasonable performance rates for colonWSI segmentation but are computationally expen-
sive and are at high risk of gradient vanishing while training. Therefore, the trials to cope with the high dimensionality
of WSI has generated a plethora of CNN-based models. These networks are mainly deeper yet lighter namely the
RESNET . Residual models [37] come with the hallmark of reusing the learnt feature for accurate and less expensive
learning as detailed in [38]. Thus, The same concept was integrated in a DENSENET architecture to segment digital
pathology images in [39]. In this context, the residual blocks are replaced with dense blocks were identity mapping
is replaced by dense concatenation connections in order to reinforce the feature re-usage. However, histopathological
slides usually encompass different shapes and sizes for the same objects and neighboring tissues which makes it hard
to distinguish. As a remedy for such problem, a recent work focuses on the use of encoder-decoder models such as
the SEGNET and the UNET as depicted in [40]. The UNET model is also used in [41] for stain separation in H&E
images to obtain the H-stain, E-stain, and background stain intensity maps. Colorectal cancer nuclei are then seg-
mented on the H-stain map. A Multi magnification version of the encoder-decoder models is introduced in [42] for
multi-class segmentation in WSIs. Authors in [43] combine the classical UNET architecture while inserting residual
connections in both blocks to ensure accurate feature learning throughout the entire process. A dense-UNet model was
also established in [44] for the same purpose. However, these models rely on a progressively down-sampled feature
map grid. This way the model is not assigning any priority to the contextual features and is incapable of reducing
false predictions. As a remedy to this issue several papers have established a 2-step procedure where the segmen-
tation and localization modules are independent [45, 46]. To simplify the task, authors in [11] propose the use of
the so-called Soft Attention mechanism. In the context of image processing, soft-Attention refers to the learning pro-
cess where exclusively relevant information are highlighted. Consequently, the network cuts the computational cost
of irrelevant activations and gains more generalisation properties. Soft-attention mechanisms are applied to transfer
information between two components of the network (encoder and decoder) unlike self-attention which are usually
used at modeling dependencies between different parts of a sequence input. In other words, soft attention of one layer
focus on the activation of other layers while self-attention looks for the activation of the same layer where it’s applied
as detailed in [47]. Therefore, different attention-based models have emerged for medical image segmentation within
the last few years as authors in [48] combine spatial and spectral attention gates for MRI, CT and Endoscopy image
segmentation. For lumbar MRI image segmentation, a three module framework is presented in [49]. It combines a full
feature fusing block followed by a combination of RESNET and attention mechanism. The final unit is a Generative
Adversarial Network (GAN). The duality of residual and attention blocks is also introduced in a enhanced efficient
UNET model where segmentation of otoscopic images is executed as detailed in [50]. In histology, a similar model
was used in [51] where a residual-inception-channel attention-Unet (RIC-Unet) enable accurate nuclei segmentation
of few Cancer Genomic Atlas (TCGA)WSIs. Authors in [52] introduce a weakly supervised multi-module framework
where a first CNN model is used to detect Regions of interest (ROI) in histopathological images. Then, attention units
are inserted in the second CNN model to refine the feature extraction process and enhances the slides classification
process. In fact, most of the attention-based models for histopathological image segmentation rely on multi-step hybrid
networks as detailed in [53], [54] and [55]. Although they enable good performance rates, such models do not deal
with the main problem of WSIs which is the poor sparse annotation of the histopathological slides. Trials to deal with
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Figure 1: Architecture of the proposed UNet model.

such issue have been presented and discussed in [56], [57] and [58]. However, most of the proposed solutions rely on
independent pre-processing modules to enhance the available annotations before training the network. Recently, many
review papers present opportunities and challenges of the use of DL for WSI image analysis [59, 60, 13].

3. Proposed methodology
In this section, we propose the use of enhanced versions of the UNET model for colon cancer histopathological

image segmentation. First, we rely on the classical UNET then we introduce the use of spatial-attention blocks to
enhance the segmentation accuracy.
3.1. Description of The Architectures
UNET

Regarding the variety of features included in each WSI, we resort to the use of skip connections for multi-level
feature representation as detailed in [61]. UNET [10] has the advantage of combining high resolution features with
high semantic reused ones. Both the contracting and expanding paths are symmetric which ensures accurate learning
of not only the content of the image but also its localization. In fact, this network encompasses three main components:
an encoder, a bottleneck, and a decoder as seen in Figure 1.
The Encoder is a classical stack of convolutional layers as seen in the CNN models. It ensures the mapping of the
inputs into a feature vector in order to grasp the context presented in the original images. While decreasing the spatial
dimensions in every layer and increasing the channels, the different convolutional layers progressively learn the key
features. The proposed architecture presents a 4-convolutional block encoder as detailed in Table 1. Each block is a
stacking of 2 convolutional layers with 3 × 3 filters and a 1 × 1 stride. For each convolutional layer, a ReLU activation
function is used along with batch normalization and max-pooling for progressive feature map size reduction.
The bottleneck links the down-sampling block to the decoding units. It consists of one convolutional block with 2
Conv2d layers with Batch Normalization and ReLu Activation for each. The main purpose behind using bottleneck
layers is to create a compressed version of the input that only contains useful information for the reconstruction process.
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Type Size Feature maps : Input Feature maps : Output # Param

Encoding Path

Conv Block* 1 16 × 3 × 3 3 × 256 × 3 16 × 256 × 256 2832
Max Pool 1 − 16 × 256 × 256 16 × 128 × 128 0
Conv Block 2 32 × 3 × 3 16 × 128 × 128 32 × 128 × 128 14016
Max Pool 2 − 32 × 128 × 128 32 × 64 × 64 0
Conv Block 3 64 × 3 × 3 32 × 64 × 64 64 × 64 × 64 55680
Max Pool 3 − 64 × 64 × 64 64 × 32 × 32 0
Conv Block 4 128 × 3 × 3 64 × 32 × 32 128 × 32 × 32 369536
Max Pool 4 − 128 × 32 × 32 128 × 16 × 16 0

Bottleneck Conv Block 256 × 3 × 3 128 × 16 × 16 256 × 16 × 16 886272

Decoding Path

Upsample 1 − 256 × 16 × 16 256 × 32 × 32 0
Conv Block 1 128 × 3 × 3 256 × 32 × 32 128 × 32 × 32 590592

Upsample Block 2 − 128 × 32 × 32 128 × 64 × 64 0
Conv Block 2 64 × 3 × 3 128 × 64 × 64 64 × 64 × 64 147840

Upsample Block 3 − 64 × 64 × 64 64 × 128 × 128 0
Conv Block 3 32 × 3 × 3 64 × 128 × 128 32 × 128 × 128 37056

Upsample Block 4 − 32 × 128 × 128 32 × 256 × 256 0
Conv Block 4 16 × 3 × 3 32 × 256 × 256 16 × 256 × 256 11664

Final Conv Block 2 × 1 × 1 16 × 256 × 256 2 × 256 × 256 34

Table 1
Layout and number of parameters of the proposed UNet model.* A Conv Block encom-
passes 2 Conv2d layers with Batch Normalization and ReLU Activation for each.

The Decoder is the up-sampling path which enables the re-construction of the input image. The purpose behind this
procedure is to enable precise localization using de-convolution. It also includes 4 deconvolutional blocks where each
block is a stacking of 2 up-sampling layers. In the classical UNET model, transposed convolutions are used with 3 × 3
filters and a stride equal to 2 × 2 in order to halve the features map number and double their size. Here, we replace the
deconvolutional layers with non-trainable up-sampling filters that execute nearest neighbor interpolation of factor 2.
Consequently, we reduce the number of trainable parameters while ensuring smooth image reconstruction. The core
of UNET is the use of skip connections to concatenate the input of each deconvolutional block with its corresponding
feature map from the contracting path. The final layer is a 1×1 convolution to map the channels to the desired number
of classes.
ATT-UNET

Figure 2: Attention mechanism: inside an attention Gate

Here, we suggest the joining of all skip connections in the UNET model with Spatial Attention Gates as shown
Figure 3. The proposed ATT-UNET model encompasses the same Encoder, Decoder and bottleneck as seen in the
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Model Figure Nbr Attention Gates position Attention Gates Nbr Skip Con position Skip Con

UNet 1 0 [None] 4 [1,2,3,4]
Att-UNet 3 4 [1,2,3,4] 4 [1,2,3,4]

Alter-AttUNet 4a 2 [2,4] 4 [1,2,3,4]
Alter-SkipUNet 4b 2 [2,4] 2 [2,4]

AutoEncoder-AttUNet 4c 2 [3,4] 2 [3,4]
AttUNet-AutoEncoder 4d 2 [1,2] 2 [1,2]

Table 2
Summary of the the Att-UNet, Alter-AttUNet,Alter-SkipUNet, AutoEncoder-AttUNet and AttUNet-
AutoEncoder models.

UNET architecture. Both the encoding and decoding paths are 4-convolutional blocks with a final 1D-convolutional
layer to map the outputted binary mask. Each convolutional block is the succession of 2 convolutional layers with their
corresponding Batch Normalization and Activation non-linearity ReLU.
Spatial AttentionGates Instead of simply concatenating spatial information from theEncoder path with theDecoder
path, attention gates introduce a selective feature learning procedure. In fact, the role of attention gates is to essentially
weighting the different regions of the image and assign the largest weights for the most relevant parts. These modules
are trainable and are applied to every patch of the image which ensures progressive weights learning and increasing
focus on the key areas. We define two main inputs for each spatial gate: 1) the gating signal gwhich is the output of the
previous low level layer and 2) the vector signal xwhich is the encoder vector from the same hierarchical level. Simply
put, g represents the high level-features since it comes from deeper in the network and x provides the spatial information
since it comes from the encoding path. The two elements are brought to the same size and then summed element-wise.
Aligned weights are then emphasized while inharmonious weights are penalised. As detailed in Figure 2, the summed
vector is fed to a ReLU activation and a 1× 1 convolutional layer. A sigmoid layer is added in order to scale the vector
into a [0,1] range. The outputted 1D vector holds the attention weights where weights closer to 1 implies more relevant
features. This attention vector is then applied to the signal x to generate a weighted feature map which is fed to the
ATT-UNET convolutional block.

Figure 3: The original Att-UNet Model
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(a) The ALTER-ATTUNET architecture (b) The ALTER-SKIPUNET architecture

(c) The AUTOENCODER-ATTUNET architecture (d) The ATTUNET-AUTOENCODER architecture
Figure 4: The proposed enhanced Att-UNet models. *The highlighted red blocks represent our proposed modified parts
from the original Att-UNet architecture.

Enhancing ATT-UNET
We propose here enhanced models of the ATT-UNET architecture through new schemes for both the Attention

Gate and Skip Connection positions in the network. The main goal of adding spatial attention gates in the UNET is
to enhance the model focus on the crucial features and discard the useless information. However, the problem arises
when useful information are judged irrelevant from the first levels and vice-versa. Then, the model has no opportunity
to re-adjust its learnt feature maps. To cope with this issue, we introduce novel ATT-UNET models as detailed in Table
2:
Alternate Attention inATT-UNET: ALTER-ATTUNET: As seen in Figure 4a, the idea is to eliminate the Attention
Gates from certain positions to add features that might be useful and discarded by the previous layer. The base model
is the same architecture as described in 3.1. Differently, Spatial Attention Gates are inserted in positions 1 and 3 from
the Decoding Path while convolutional blocks 2 and 4 are connected simply through skip connections to the Encoder.
Alternate Both Attention and Skip connections inATT-UNET: ALTER-SKIPUNET: Although skip connections
are the core of theUNETmodel, the combination of bothAttention gates and skip connectionsmerges low-level features
from the encoder with high semantic features from the decoder. The semantic gap between these two feature represen-
tation levels could mislead the learning process. Therefore, we propose a novel ALTER-SKIPUNET model where skip
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connections are deleted in the absence of Attention Gates. As seen in Figure 4b, the same ALTER-ATTUNET model is
maintained where convolutional blocks of position 1 and 3 take respectively the output of the previous encoding layer
as entry.
Merging Auto-Encoders and ATT-UNET: AUTOENCODER-ATTUNET and ATTUNET-AUTOENCODER:
An auto-encoder learns to capture as much information as possible rather than as much relevant information as possi-
ble. Therefore, we combine both the Spatial Attention UNET and the classical auto-encoder model in novel models:
the AUTOENCODER-ATTUNET and the ATTUNET-AUTOENCODER which respectively encompass Attention Gates
in position [1,2] and [3,4] as detailed in Figure 4c and Figure 4d. The other share of the models is a classical en-
coder/decoder duality with the absence of any skip connections or attention mechanisms. That way, we loosen the
control degree over the model and instate it to learn more features.
3.2. Training Strategy: Learning from sparsely annotated WSI

In supervised DL segmentation tasks, an important amount of labeled clean data is usually required to achieve
accurate results. However, such condition is hard to accomplish in the pathology field as detailed in the previous
section 2.1. Therefore, experts tend to only highlight some specific regions or points in the WSI to simply describe the
content of the image. This procedure is described as "sparse annotation" where an important amount of the pixels is
left unlabeled. Regardless from its rapid annotation, this method generates reference images that lack localization and
boundaries information of the classes. Having to deal with the shortage of labeling information, we propose a weakly
supervised procedure for training our DL models for WSI segmentation. The 3-steps strategy is described as follows.
Valid patches only: In order to avoid the influence of unlabeled regions, we choose to select small richly annotated
patches. For both the learning and evaluation passes, the model is fed only with patches containing a majority of
annotated pixels. The used patches usually encompass one class at a time since the sparsely annotated regions are
small and distant. Trying to include different classes in one patch injects lots of doubtful information in the learning
process and biases the results. However, this stage isn’t capable of compensating the unbalanced class representation.
Weighted cross entropy loss: The sparse annotation of histopathological data usually implies unbalanced class
representation. Since the main focus is on the tumour tissues, the rest of the classes are unequally presented namely
stroma, tissues background and fat. The classical way of evaluating a model is using a cross-entropy loss where for
each class we assign a true label ŷ and a predicted label y. The loss value is calculated as:

Loss(y, ŷ) = −
n
∑

i=1
ŷi log yi (1)

However, the same importance is given to all classes regardless from their presence rate in the data. Therefore, we
propose to add a weighted factor wi that assigns a different value to each class according to its representation in the
WSI as detailed in (2).

Loss(y, ŷ) = −wi

n
∑

i=1
ŷi log yi,

n
∑

i=1
wi = 1 (2)

where Loss(y, ŷ) is the cross entropy loss evaluating the difference between the predicted probability yi ∈ [0, 1]
and the target label ŷi ∈ [0, 1] (wi ∈ [0, 1] is the weight of each class i and n the class number).
Boundary-aware loss: Histopathological images represent different neighboring tissue types with bulk regions and
infrequent edge pixels. In that situation, DL models have tendency to mainly focus on the continuous more presented
tissue blocks. As a remedy to this issue, we add a penalty for mistaken border pixel prediction. The proposed approach
is inspired from the original UNET model [10] where sophisticated morphological functions are used to generate
the edge-aware weights. Here, we propose a less complicated method to re-adjust the feature maps with highlighted
edges. A binary morphological dilatation of the border pixels is used where boundaries of tumour pixels are gradually
enlarged. Consequently, this regions are more noticeable and less confusing for the learning process. The dilatation is
applied for each region centered at an edge pixel (i,j) with value equal to 1 in the binary masks. All neighboring pixels

A Ben Hamida et al.: Preprint submitted to Elsevier Page 8 of 18



Attention UNet for colon cancer segmentation

(a) Sparse annotations of the classes of interest (b) Binary mask for the class "Tumour"
Figure 5: Sample of sparsely annotated WSI/mask from the our dataset.

are equally set to 1 to further highlight the boundaries. The new weighted boundary-aware loss function Losswba(y, ŷ)is then computed as follows:

Losswba(y, ŷ) = we
wi

n
∑

i=1
ŷi log yi, (3)

where we is the new edge dependent weight map and wi ∈ [0, 1].

4. Experimental Settings
Publicly available Colon cancer WSI datasets are used to evaluate and compare the proposed ATT-UNETmodels

with state of the art approaches. Linux operating system is used with an Intel(R) Xeon(R) Bronze 3204 1.9 GHz
processors and 62GB RAM. All DL models were implemented using The Pytorch framework. Tests were executed on
a Nvidia Quadro RTX 5000 GPU with 16GB memory.
4.1. Data
The AICOLO dataset includes 396 colon cancer WSIs. All images are stained with Haematoxylin, Eosin, and
Natural Saffron. The dataset is created using a Hamamatsu photonics scanner at a 0.454µm/pixel spatial resolution.
The number of pixels per slide varies between 4 and 5 billions. A slide sample is shown in Figure 5. Only 15% of
the WSIs were sparsely labeled by pathologists from CFGL (Dijon, France).The dataset includes 8 different classes
namely tumour, stroma, fat, necrosis, immune, healthy tissue, artifacts and background as seen in Figure 5b. 256×256
patches are extracted from the labelled regions using the Cytomine [62] image retrieval tools. The final set of patches
is split into Training and Testing sub-sets as seen in Table 3. For binary image segmentation tasks, "Tumour" patches
represent the positive class while the rest of the 7 classes-all joint together-represent the negative class of "Normal
Tissues". Consequently, the dataset is made of 1454 "Tumour" samples and 3727 "Non-Tumour" patches.
The 100,000 histological images dataset The NCT-CRC-HE-100K dataset encompasses 86H&E stained colon
cancer WSIs from both the NCT Biobank (National Center for Tumor Diseases, Heidelberg, Germany) and the UMM
pathology archive (UniversityMedical Center Mannheim, Mannheim, Germany). A total of 100.000 224×224 patches
were extracted from the digital slides including 9 classes namely tumours tissues and healthy epithelium regions.
The Colorectal Histology MNIST The CRC-5000 dataset includes 5000 histopathological images using the
Aperio ScanScope scanner at a 20× magnification. The 150 × 150 patches come from the archive of the Institute
of Pathology, University Medical Center Mannheim, Heidelberg University,). The dataset represents colon cancer
adenocarcinoma along with other 8 normal tissue types.
The GlaS (Gland Segmentation in Colon Histology Images Challenge): Warwick The WARWICK dataset
was first created for the GlaS challenge including T3 and T4 colon tumour adenocarcinoma. The original 16 H&E
stained histopathological slides are cropped into 825 patches of 150 × 150 pixels.
A Ben Hamida et al.: Preprint submitted to Elsevier Page 9 of 18
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Training samples Testing samples

Tumour 976 478
Necrosis 387 193
Immune 301 150
Stroma 642 320

Fat 75 37
Tissue 477 238

Artifacts 280 139
Background 326 162

Table 3
Number of samples in training and testing sets in our AiCOLO patch-based dataset.

Data #images Image size Annotation-type Balanced classes Pre-processed Artifacts

AiCOLO 5181 256 × 256 Sparse No None Yes
NCT-CRC-HE-100K 100,000 224 × 224 Dense Yes Yes No

CRC-5000 5000 150 × 150 Dense Yes Yes No
Warwick 825 150 × 150 Dense Yes Yes No

Table 4
Comparison between the AiCOLO,NCT-CRC-HE-100K, CRC-5000 and Warwick datasets.

As detailed in Table 4, AICOLO dataset introduces different challenges when compared with state of the art
datasets including NCT-CRC-HE-100K, CRC-5000 and WARWICK. The AICOLO slides suffer from many artifacts
namely out of focus regions, tears and cuts in the tissues. Besides, the number of samples per class is completely
unbalanced where tissues like Immune are very poorly represented as seen in 3. This issue occurs with AICOLO binary
segmentation. Indeed, the class "tumour" represents approximately 2.5× less surface than "non tumour" tissues. In
contrast, CRC-5000, NCT-CRC-HE-100K andWARWICK datasets are all composed of a balanced set of tissue types,
and their patches are clean (no staining problems or artifacts). Thus, AiCOLO dataset presents a high level of difficulty
for training DL models.
4.2. Data augmentation

Data augmentation is helpful to enhance the performance of DL models by providing new and different data sam-
ples for the training process. In fact, a rich data is crucial to ensure high accuracy in this context. In the absence of
richly annotated datasets in our case of study, we resort to augmentation techniques. Thus, collecting and labeling
histopathological images can be exhausting and costly processes as already detailed in previous sections. Transfor-
mations in datasets by using data augmentation techniques allow us to reduce these operational costs while creating
a wide range of image variations. In order to reproduce the different pathologist perspectives, spatial alterations are
applied to each WSI and its respective binary mask namely arbitrary axial flips, center and resized crops and rotations.
Furthermore, Each WSI is converted to gray-scale with random brightness, saturation and contract values.
4.3. Evaluation Criteria

Our models have been evaluated and compared with state of the art approaches, using accuracy, specificity, sensi-
tivity and F1-score:

Accuracy = TN + TP
TN + TP + FN + FP

Specificity = TN
TN + FP
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Sensitivity = TP
TP + FN

F1-score = 2 TP
2 TP + FP + FN

where
TP = True Positives: Correctly classified "Tumour" Pixels.

TN = True Negatives: Correctly classified "Non-Tumour" Pixels.
FP = False Positives: "Non-Tumour" pixels that are Miss-classified as "Tumour".
FN = False Negatives: "Tumour" pixels that are Miss-classified as "Non-Tumour".

4.4. Model Parameters
To train the models we only use 256 × 256 patches derived from the AICOLO dataset as detailed in Table 3.

For sufficient representation of the data content, we use a batch size of 32 for optimization and weight update. The
Stochastic Gradient Descent algorithm is used with an initial learning rate of value 0.0001 and a 0.9 momentum. For
more adapted training, the learning rate value is divided by 10 each 25 epochs. All models including the UNET,
ATT-UNET, ALTER-ATTUNET, ALTER-SKIPUNET, AUTOENCODER-ATTUNET andATTUNET-AUTOENCODER are
trained for 200 epochs. The ReLu activation function is deployed for all convolutional layers in all models. The
different FCN models along with DEEPLABV3+ are trained for 100 epochs. Note that each model is trained 10 times
with random train and test splits.

5. Results and Discussion
UNET vs. ATT-UNET: We tested two different UNET schemes. The first UNET is detailed in Table 1 where the
number of filters ranges from 16 to 256 progressively at each convolutional block. The model ensures ≈ 9% higher
accuracy and F1-score than the SEGNET suggested in [63]. The number of trained parameters is also around 3× less
important than the SEGNETas seen in Table 5. A heavier UNET architecture is used on our AICOLO dataset. The
number of filters vary between 64 to 1024 at each convolutional block. Although this model provides ≈ 3% higher
accuracy rates it still introduces a dramatically important computational cost since it trains about 17×more parameters.
In order to enhance both the accuracy rate and the cost, we propose the evaluation of the integration of spatial attention
gates in the light UNET model. In other words, we use a low number of filters and integrate the attention mechanism
to focus on the relevant regions only. As seen in Table 5, the ATT-UNET model has an accuracy rate of 95.02% and
a F1-score of 93.28%. As shown in Figure 7, the integration of attention gates enhances the model performances of
the segmentation on the colorectal cancer AICOLO slides. The ATT-UNET also guarantees accurate results with a
light model since it only trains 2.18M parameters while SEGNET trains 7.6M and the heavy UNET generates 34.53M
parameters.

Although the three models rely on the encoder/decoder duality, they still introduce different feature learning strate-
gies. The SEGNET uses multi-level convolutional filters along with trainable weights in the pooling layers to ensure
multi-scale semantic data learning. However, the only connection between the encoder and the decoder blocks are the
pooling layer learnt weights which alone are insufficient to have a thorough insight into the data content in the decod-
ing process. The classical UNET model as presented in Table 1 comes with the hallmark of using skip connections to
link the encoder and decoder blocks unlike the SEGNET model. The learning strategy relies on the merge of low-level
features from the encoder with high deep features from the decoder. Despite its ability to enhance the segmentation
precision as detailed in Table 5, the combination of features from different semantic levels can bias the learning pro-
cess. Simply put, the semantic gap between the encoder and decoder features generates incompatible sets of features
to learn from and misleads the focus of the convolutional filters in the decoding path. Consequently, the use of ATT-
UNET guarantees the link between the encoding and decoding path unlike the SEGNET model while compensating
the semantic gap between the fused features generated by the classical UNET skip connections. Actually, the attention
mechanism as seen in Figure 2 uses trainable weights. As a result, the spatial attention filters are updated to make the
model progressively focuses on the relevant regions. The ATT-UNET model is then capable of generating more precise
tumour segmentation in the AICOLO slides as show in Figure 6 where less false negatives are introduced.
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Model #filters Accuracy Specificity Sensitivity F1-score #params

UNet [64 to 1024] 92.52 ± 0.06 91.85 ± 0.04 92.79 ± 0.06 89.47 ± 0.02 34.53M
UNet [16 to 256] 89.87 ± 0.08 90.82 ± 0.06 89.17 ± 0.06 87.48 ± 0.05 2.23M

Att-UNet [16 to 256] 95.02 ± 0.04 93.15 ± 0.07 96.06 ± 0.04 93.28 ± 0.06 2.18M
SegNet[63] [16 to 256] 81.22 ± 0.02 80.70 ± 0.06 81.40 ± 0.02 75.53 ± 0.03. 7.6M

Table 5
Accuracy, specificity, sensitivity rates and F1-score (in %) for UNet, Att-UNet and SegNet.

Enhancing ATT-UNET As detailed above, the introduction of spatial attention gates enhances the segmentation
results on the AICOLO dataset. Figure 6 shows an example of an AICOLO slide segmentation results where one can
clearly notice that although the ATT-UNET is capable of successfully tracing the tumor tissues it still suffers from the
presence of false positives. This result is reflected in Table 6 and in Figure 7 where a specificity of 93.15% is reached
versus a sensitivity of 96.06%. In other words, the ATT-UNET model is able to detect positive tumor tissues in 96.06%
of cases but still confuses 7% of the negative pixels with tumor. As a remedy to this issue, we propose the different
schemes of the attention based models. As seen in Table 6, the ALTER-ATTUNET model ensures not only higher
accuracy and F1 rates but especially a 3% higher specificity which indicates a better tumor segmentation and less false
positives in the resulting mask. The deletion of skip connections in the absence of attention gates also guarantee bet-
ter performance than the ATT-UNET as detailed in Figures 7a, 7b, 7c and 7d. As detailed in Table 6, three different
architectures are proposed where the skip connections and the attention gates are deleted in different positions in the
network. First, when inserting skip connections and attention gates only in the first levels of the model (positions 1
and 2 of the decoder), the ATTUNET-AUTOENCODER model simulates a combination of an ATT-UNET followed by
a classical Auto-encoder. Then, we propose a similar yet reversed model were skip connections and attention gates
come in the final levels of the model (positions 3 and 4). Both ATTUNET-AUTOENCODER and AUTOENCODER-
ATTUNET models generate similar performances where the accuracy rates are ≈ 13% greater than SEGNET[63] seg-
mentation results. However, these models still introduce relatively a more important number of false negatives which
is obvious with the respective 90.36% and 92.08% sensitivity rates for both the ATTUNET-AUTOENCODER and the
AUTOENCODER-ATTUNET. Finally, the ALTER-SKIPUNET is presented where skip connections and attention gates
come in alternated positions (positions 2 and 4 of the decoder). This model ensures very close accuracy and F1 rates
to the ALTER-ATTUNETwith similar number of parameters = 2.18M .

As seen in Figures 6 and 7, the introduction of attention gates in the learning process can fill in the semantic gap
between the encoder and decode features. However, inserting attention gates in all positions of the model as seen in
Figure 3 can mislead the learning process. In fact, if the model judges a region as irrelevant in some stage of the
learning process, it will eventually be discarded for the rest of the procedure. Therefore, as seen in the performance
results alternating between attention gates and simple skip connections guarantee the link between the encoder and the
decoder to extract positions of the pixels while using the attention mechanism to re-adjust the relevant regions to learn
from. Although the elimination of skip connections in the absence of attention gates can ensure decent results, it still is
problematic when dealing with WSI. Limitations of ALTER-SKIPUNET, AUTOENCODER-ATTUNET and ATTUNET-
AUTOENCODER models come from the gap between "highly framed learning" to "free learning". Simply put, layers
that encompass both skip connections and attention gates provide information about "where" and "what" to look for
into the data. Layers where no encoder/decoder links are included forces the model to reconstruct the data with no prior
knowledge about the position and the content of the features. Therefore, it is better performing than ATT-UNET but
slightly less accurate than ALTER-ATTUNET where skip connections are present in all levels of the model.
Enhanced ATT-UNET VS FCNS and DEEPLABV3+ In order to evaluate our proposed model, we compare it
with widely used deep learning-based semantic segmentation models namely FCN and DEEPLABV3+ networks. We
rely on the FCN model that was first introduced in [26] and lately used in [27, 28]. The architecture uses a padding
layer, VGG-16 as a backbone followed by deconvolutional and cropping layers. FCN32S up-samples the output with
no prior spatial information. FCN16S and FCN8S fuse the final output with up-sampled outputs from encoding layers
using element-wise addition as detailed in [26]. DEEPLABV3+ is another encoder-decoder CNN based model [64].
The highlights of this model are the use of dilated convolutions combined with atrous spatial pyramid pooling (ASPP)
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(a) Sparse annotated WSI

(b) FCN8S segmentation result (c) DEEPLABV3+ segmentation result

(d) UNET segmentation result (e) ATT-UNET segmentation result

(f) ATTUNET-AUTOENCODER segmentation result (g) ALTER-ATTUNET segmentation result
Figure 6:

Segmentation maps of the FCN8s, DeepLabv3+,UNet, Att-UNet, AutoEncoder-AttUNet and
Alter-AttUNet models.

to encode multi-scale contextual information [65].
As seen in Table 6 and Figure 7, the proposed ATT-UNET models ensure the highest performance rates when trained
with the AICOLO dataset. In the absence of spatial information, FCN32S generates rough output maps that lack
accuracy (84.98%) and sensitivity (73.89%). Although FCN16S and FCN8S add more spatial information to enhance
the results, they still generate < 90% accuracy rates. Besides, these models suffer from low true positive rates (<
80%) sensitivity compared with our enhanced ATT-UNET schemes(> 90%). In fact, the different FCN models only
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Model Figure pos Attention Gates pos Skip Con Accuracy Specificity Sensitivity F1-score #params

Att-UNet 3 [1,2,3,4] [1,2,3,4] 95.02 ± 0.04 93.15 ± 0.07 95.06 ± 0.04 93.28 ± 0.06 2.185M
Alter-AttUNet 4a [2,4] [1,2,3,4] 95.88 ± 0.03 96.12 ± 0.04 95.05 ± 0.03 95.18 ± 0.02 2.180M
Alter-SkipUNet 4b [2,4] [2,4] 95.73 ± 0.06 96.00 ± 0.04 95.06 ± 0.06 94.78 ± 0.04 2.180M

AutoEncoder-AttUNet 4c [3,4] [3,4] 94.98 ± 0.07 95.84 ± 0.06 92.1 ± 0.07 92.08 ± 0.08 2.183M
AttUNet-AutoEncoder 4d [1,2] [1,2] 94.44 ± 0.08 96.11 ± 0.08 90.36 ± 0.06 92.23 ± 0.07 2.163M

SegNet[63] - - - 81.22 ± 0.02 80.70 ± 0.06 81.40 ± 0.02 75.53 ± 0.03. 7.6M
FCN8s - - - 88.05 ± 0.09 95.23 ± 0.02 78.37 ± 0.06 85.98 ± 0.05 18.6M

FCN16s - - - 85.23 ± 0.09 91.38 ± 0.03 74.13 ± 0.07 81.85 ± 0.04 18.6M
FCN32s - - - 84.98 ± 0.08 89.17 ± 0.03 73.89 ± 0.05 80.81 ± 0.04 18.6M

DeepLabv3+ - - - 87.53 ± 0.06 88.13 ± 0.03 87.02 ± 0.08 87.57 ± 0.02 59.3M

Table 6
Accuracy, specificity, sensitivity rates and F1-score (in %) for Att-UNet, Alter-AttUNet,Alter-SkipUNet,
AutoEncoder-AttUNet, AttUNet-AutoEncoder, FCN8s, FCN16s, FCN32s and DeepLabv3+.

rely on classical up-sampling layers with no trainable filters which results in loosing spatial information when going
deeper. This issue is solved by adding both Attention Gates and Skip Connections in certain positions as detailed in
our introduced models and shown in Figure 6. In the same context, DEEPLABV3+ uses dilated separable convolutions
to learn the spatial resolution of the outputted feature maps. Therefore, the model extracts dense feature maps that
covers spatial information at multiple scales. However, histopathological images usually encompass low-level features
with spatially limited regions like seen in our AICOLO dataset. Models like DEEPLABV3+ introduce a high level
of complexity that doesn’t fit with the colon cancer segmentation tasks. Therefore, the proposed ATT-UNET models
outperform DEEPLABV3+ with > 8% accuracy and sensitivity. That goes without saying, that the enhanced ATT-
UNET networks ensure not only high performances rates but also low computational costs. As a matter a fact, the
proposed models train ≈ 8× less parameters than the FCN architectures and ≈ 27× less than the DEEPLABV3+.
Comparison with state of the art methods In order to evaluate and compare our proposed models with state-
of-the-art methods, we used three different publicly available histopathological data including the CRC-5000, NCT-
CRC-HE-100K and the WARWICK datasets. As seen in Table 7, our proposed enhanced model ALTER-ATTUNET en-
sures the best performance among all models when trained with the three different datasets. First, when using the
CRC-5000 images, the ALTER-ATTUNET reaches an overall performance rates > 99% including accuracy, speci-
ficity, sensitivity and F1 scores. Actually, the model super-pass the approaches proposed in [63] and [66] where the
authors introduce a combination of different texture filters for binary WSI segmentation. Then, we use the NCT-CRC-
HE-100K data to train and evaluate our models. Here again our ALTER-ATTUNET achieves the best segmentation
accuracy compared with the ENSEMBLE DNN proposed by the authors in [67]. In fact, the methods relies on an En-
semble Deep Neural network composed of DenseNet-121, InceptionResNetV2, Xception and a custom feed forward
CNN. Despite its > 98% performance rates, the approach in [67] introduces a complex model for automatic data learn-
ing which limits it generalization properties. Finally, we deploy the WARWICK dataset where the GlaS MICCAI 2015
challenge winners suggested in [35], a multi-level CNN model. The architecture uses a first CNN as a classifier to
highlight the glands from the background and then a second CNN is used for gland segmentation based on weighted
total variation. The outputted result is then the regularization of the CNNs predictions. The hallmark of this approach
is a high sensitivity of 73%. CUMedVision2 is a deep contour-aware network that generates multi-level feature rep-
resentations using an FCN model The architecture achieved an F1-score of 76.9% as presented in the Glas challenge
[24]. However, our proposed ALTER-ATTUNET ensures high accuracy and F1 rates > 78% while increasing the sensi-
tivity to > 82%. ALTER-ATTUNET architectures are not only lighter than available techniques but can also cope with
different histopathological datasets in different contexts.
Training Strategy for weakly supervised Learning As detailed above, we rely on a three-step training strategy to
cope with the sparse annotation of the AICOLO colon cancer dataset. In order to evaluate the impact of such procedure
on the segmentation results, we have executed different tests. We resorted to the classical training process where all
patches contribute in the same way and no special interest is dedicated to boundaries. For all models including SEG-
NET, UNET, ATT-UNETand the different ALTER-ATTUNET versions, the models are incapable of correctly learning
and classifying the "Tumour" pixels in all AICOLO histopathological slides. In fact, in the absence of the first step
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(a) Accuracy (b) F1-Score

(c) Specificity (d) Sensitivity
Figure 7: Statistical performance analysis of the UNet, Att-UNet, Alter-AttUNet, AutoEncoder-AttUNet,
FCN8s, DeepLabv3+ and SegNet models.

the models are fed with random patches that could include too small sparse annotated regions and mislead the learning
process. Tests show that accuracy rates collapse to under ≈ 40% when patches aren’t precisely selected while rises up
to ≈ 90% when only valid patches are used for the training. Moreover, both the weighted and boundary aware losses
enable the enhancement of the accuracy rates of all models. The ALTER-ATTUNET model for example witnesses a 5%
better accuracy and F1-scores when trained with weighted boundary aware loss.

6. Conclusion
In this paper, we have proposed the use of novel enhancedmodels inspired from theATT-UNET. First, we compared

and highlighted the role of spatial attention gates in enhancing feature learning from histopathological colorectal
data. Then, we introduced different schemes of attention-based UNET models. The ATT-UNET, ALTER-ATTUNET,
ALTER-SKIPUNET, AUTOENCODER-ATTUNET and ATTUNET-AUTOENCODER architectures all perform well in an
AICOLO colon cancerWSI segmentation task. The models outperform state-of-the-art semantic segmentation models
namely FCN8S, FCN16S, FCN32S and DEEPLABV3+. The enhanced ATT-UNET models enable the simultaneous
feature learning and spatial localization at different hierarchical levels. The hallmark of such networks is the ability to
focus on relevant information without exploding the computational cost. Furthermore, the ALTER-ATTUNET proposed
A Ben Hamida et al.: Preprint submitted to Elsevier Page 15 of 18
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CRC-5000 NCT-CRC-HE-100K Warwick

Acc. Spec. Sens. F1. Acc. Spec. Sens. F1. Acc. Spec. Sens. F1.

UNet 98.82 ± 0.18 99.08 ± 0.09 98.32 ± 0.08 98.12 ± 0.12 99.23 ± 0.09 99.54 ± 0.04 99.07 ± 0.10 99.28 ± 0.09 78.81 ± 0.09 76.73 ± 0.13 81.87 ± 0.09 75.03 ± 0.09
Att-UNet 99.06 ± 0.07 98.67 ± 0.07 97.97 ± 0.06 96.85 ± 0.10 99.56 ± 0.03 99.58 ± 0.01 99.09 ± 0.09 99.23 ± 0.07 78.92 ± 0.09 76.69 ± 0.10 82.02 ± 0.08 78.07 ± 0.06

Alter-AttUNet 99.65 ± 0.09 99.78 ± 0.07 99.02 ± 0.08 99.01 ± 0.07 99.73 ± 0.03 99.61 ± 0.04 99.23 ± 0.02 99.31 ± 0.02 79.03 ± 0.07 76.84 ± 0.06 82.13 ± 0.07 78.31 ± 0.04
SegNet[63] 98.66 ± 0.08 99.02 ± 0.12 98.14 ± 0.08 98.38 ± 0.04 99.12 ± 0.08 99.56 ± 0.07 98.36 ± 0.13 98.73 ± 0.04 78.39 ± 0.24 76.09 ± 0.16 81.93 ± 0.08 74.48 ± 0.05

Texture Analysis[66] 98.60 - - - - - - - - -
Ensemble DNN[67] - - - - 96.16 - - - - - - -

CNN[35] - - - - - - - - - 57.00 73.00 61.0
CUMedVision1 [24] - - - - - - - - - - - 76.90

Table 7
Accuracy rates, specificity, sensitivity and F1-score (in %) for Att-UNet, Alter-AttUNet,Alter-SkipUNet,
AutoEncoder-AttUNet and AttUNet-AutoEncoder with NCT-CRC-HE-100K, CRC-5000 War-
wick datasets

model outperform state-of-the-art methods when dealing with publicly available datasets namely the NCT-CRC-HE-
100K, CRC-5000 and WARWICK.

Introducing a new pattern for ATT-UNET represents an appealing solution for histopathological image segmen-
tation. Delving into the details of the model one can easily notice that a > 99% rate has been reached for accuracy,
sensitivity, specificity and F1-score when processing NCT-CRC-HE-100K and CRC-5000 datasets. Less rich WSI
collections like WARWICK and AICOLO suffer from lower performance rates. As a matter of fact, the lack of richly
annotated data and a balanced class representation hinder the efficiency of ALTER-ATTUNET. The incorporation of a
special training strategy is capable of enhancing the segmentation results to a certain extent. However, datasets that
encompass a low number of annotated samples with an important share of biased, unbalanced and full of artifacts are
one of the main obstacle toward accurate feature learning and successfully accomplished WSI segmentation tasks.
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